919 resultados para Dried eggs
Resumo:
Continuous Plankton Recorder (CPR) samples from the English Channel and adjacent Celtic shelf, taken over the period 1958-1980, were analysed for sardine (Sardina pilchardus) eggs. Results showed the progression of sardine spawning along the English Channel from west to east from March to August and a return from east to west from September to November. This corresponds with the two seasonal peaks of sardine egg abundance in the western Channel: the main summer peak being in May/June, with a smaller autumn peak in October/November. Long-term changes in sardine egg abundance in CPR samples showed a decline in summer spawning from the late 1960s, but no clear trend in autumn-spawned egg abundance. Similar patterns were observed in the numbers of sardine eggs sampled by conventional plankton net tows at the time-series Station L5 off Plymouth. This supports the use of the longer time-series of sardine egg data at L5 as being representative of a wider area and emphasizes the importance in continuation of the L5 time-series.
Resumo:
Measurements were made of the density and settling velocity of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus), using a density-gradient column. These results were related to observed vertical distributions of eggs obtained from stratified vertical distribution sampling in the Bay of Biscay. Eggs of both species had slightly positive buoyancy in local seawater throughout most of their development until near hatching, when there was a marked increase in density and they became negatively buoyant. The settling velocity of anchovy eggs, which are shaped as prolate ellipsoids, was close to predictions for spherical particles of equivalent volume. An improved model was developed for prediction of the settling velocity of sardine eggs, which are spherical with a relatively large perivitelline volume; this incorporated permeability of the chorion and adjustment of the density of the perivitelline fluid to ambient seawater. Eggs of both species were located mostly in the top 20 m of the water column, in increasing abundance towards the surface. A sub-surface peak of egg abundance was sometimes observed at the pycnocline, particularly where this was pronounced and associated with a low-salinity surface layer. There was a progressive deepening of the depth distributions for successive stages of egg development. Results from this study can be applied for improved plankton sampling of sardine and anchovy eggs and in modelling studies of their vertical distribution.
Resumo:
Measurements were made of the density and settling velocity of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus), using a density-gradient column. These results were related to observed vertical distributions of eggs obtained from stratified vertical distribution sampling in the Bay of Biscay. Eggs of both species had slightly positive buoyancy in local seawater throughout most of their development until near hatching, when there was a marked increase in density and they became negatively buoyant. The settling velocity of anchovy eggs, which are shaped as prolate ellipsoids, was close to predictions for spherical particles of equivalent volume. An improved model was developed for prediction of the settling velocity of sardine eggs, which are spherical with a relatively large perivitelline volume; this incorporated permeability of the chorion and adjustment of the density of the perivitelline fluid to ambient seawater. Eggs of both species were located mostly in the top 20 m of the water column, in increasing abundance towards the surface. A sub-surface peak of egg abundance was sometimes observed at the pycnocline, particularly where this was pronounced and associated with a low-salinity surface layer. There was a progressive deepening of the depth distributions for successive stages of egg development. Results from this study can be applied for improved plankton sampling of sardine and anchovy eggs and in modelling studies of their vertical distribution.