932 resultados para Dov Baer, of Mezhirech, d. 1772
Resumo:
The purpose of the literature on Research Joint Ventures (RJV), pioneered by DÃAspremont and Jacquemin (1988) and Kamien, Muller, and Zang (1992), has been to combine the best of two worlds: to appropriately deal with R&D spillovers while preserving competition in the product market. Moreover, RJVs eliminate duplication of R&D. Thus, at least in theory, RJVs dominate other solutions such as subsidies. If, however, we are concerned about risks of cartelization, then SpenceÃs (1984) subsidy-based solution for independently acting firms, is a viable alternative that cannot be dismissed. Indeed, in contrast to the previous literature, we find that in the presence of R&D subsidies, market performance may unambiguously improve with the number of firms in the market.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Spider venom sphingomyelinases D catalyze the hydrolysis of sphingomyelin via an Mg2+ ion-dependent acid-base catalytic mechanism which involves two histidines. In the crystal structure of the sulfate free enzyme determined at 1.85 angstrom resolution, the metal ion is tetrahedrally coordinated instead of the trigonal-bipyramidal coordination observed in the sulfate bound form. The observed hyperpolarized state of His47 requires a revision of the previously suggested catalytic mechanism. Molecular modeling indicates that the fundamental structural features important for catalysis are fully conserved in both classes of SMases D and that the Class II SMases D contain an additional intra-chain disulphide bridge (Cys53-Cys201). Structural analysis suggests that the highly homologous enzyme from Loxosceles bonetti is unable to hydrolyze sphingomyelin due to the 95G1y -> Asn and 134Pro -> Glu mutations that modify the local charge and hydrophobicity of the interfacial face. Structural and sequence comparisons confirm the evolutionary relationship between sphingomyelinases D and the glicerophosphodiester phosphoesterases which utilize a similar catalytic mechanism. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).
Resumo:
We study the order parameter for mixed-symmetry states involving a major d(x2-y2) state and various minor s-wave states (s, s(xy), and Sx2+y2) for different filling and temperature for mixing angles 0 and pi /2. We employ a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice. There is mixing for the symmetric s state both on tetragonal and orthorhombic lattice. The s(xy) state mixes with the d(x2-y2) state only on orthorhombic lattice. The s(x2+y2) state never mixes with the d(x2-y2) state. The temperature dependence of the order parameters is also studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
We report on a measurement of the B-d(0) mixing frequency and the calibration of an opposite-side flavor tagger in the D0 experiment. Various properties associated with the b quark on the opposite side of the reconstructed B meson are combined using a likelihood-ratio method into a single variable with enhanced tagging power. Its performance is tested with data, using a large sample of reconstructed semileptonic B ->mu(DX)-X-0 and B ->mu(DX)-X-* decays, corresponding to an integrated luminosity of approximately 1 fb(-1). The events are divided into groups depending on the value of the combined tagging variable, and an independent analysis is performed in each group. Combining the results of these analyses, the overall effective tagging power is found to be epsilon D-2=(2.48 +/- 0.21(-0.06)(+0.08))%. The measured B-d(0) mixing frequency Delta m(d)=0.506 +/- 0.020(stat)+/- 0.016(syst) ps(-1) is in good agreement with the world average value.
Resumo:
Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.