919 resultados para Doped Carbon Nanotubes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the large scale synthesis of millimetre long buckled multiwalled carbon nanotubes by one-step pyrolysis. Current carrying capability of a highly buckled region is shown to be more as compared to a less buckled region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report spontaneous translocation of small interfering RNA (siRNA) inside carbon nanotubes (CNTs) of various diameters and chirality using all atom molecular dynamics simulations with explicit solvent. We use umbrella sampling method to calculate the free energy landscape of the siRNA entry and translocation event. Free energy profiles show that siRNA gains free energy while translocating inside CNT, and barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time tau decreases with the increase of CNT diameter with a critical diameter of 24 angstrom for the translocation. In contrast, double strand DNA of the same sequence does not translocate inside CNT due to large free energy barrier for the translocation. This study helps in understanding the nucleic acid transport through nanopores at microscopic level and may help designing carbon nanotube based sensor for siRNA. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773302]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that carbon nanotubes (CNTs) possess multifunctional characteristics, which are applicable for a wide variety of engineering applications. CNT is also recognized as a radiation sensitive material, for example for detecting infrared (IR) radiations. One of the direct implications of exposing CNTs to radiation is the photomechanical actuation and generation of a photovoltage/photocurrent. The present work focuses on coupling electromechanical and photomechanical characteristics to enhance the resulting induced-strain response in CNTs. We have demonstrated that after applying an electric field the induced strain in CNT sheet is enhanced to about similar to 2.18 times for the maximum applied electric field at 2 V as compared to the photo-actuation response alone. This enhancement of the strain at higher bias voltages (> 1 V) can be considered as a sum of individual contributions of the bias voltage and IR stimulus. However, at lower voltage (< 1 V) the enhancement in the resulting strain has been attributed to the associated electrostatic effects when CNTs are stimulated with IR radiation under external bias conditions. This report reveals that voltage bias or IR stimulus alone could not produce the observed strain in the CNT sheet under lower bias conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the Fowler-Nordheim field emission (FNFE) from carbon nanotubes on the basis of a newly formulated electron dispersion law by considering the fact that the intense electric field needed for FNFE changes the band structure in a fundamental way. It has been found that the field emitted current increases with increasing electric field in oscillatory manner due to the appearance of van Hove singularities and exhibits spikes for particular values of the electric field where the singularity occurs. The numerical values of the field emitted current in all the cases vary widely and the determined by the chiral indices and the diameter in the respective cases. The results of this paper find three applications in the fields of nanoscience and technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneity in tumors has led to the development of combination therapies that enable enhanced cell death. Previously explored combination therapies mostly involved the use of bioactive molecules. In this work, we explored a non-conventional strategy of using carbon nanostructures (CNs) single walled carbon nanotube (SWNT) and graphene oxide (GO)] for potentiating the efficacy of a bioactive molecule paclitaxel (Tx)] for the treatment of lung cancer. The results demonstrated enhanced cell death following combination treatment of SWNT/GO and Tx indicating a synergistic effect. In addition, synergism was abrogated in the presence of an anti-oxidant, N-acetyl cysteine (NAC), and was therefore shown to be reactive oxygen species (ROS) dependent. It was further demonstrated using bromodeoxyuridine (BrdU) incorporation assay that treatment with CNs was associated with enhanced mitogen associated protein kinase (MAPK) activation that was ROS mediated. Hence, these results for the first time demonstrated the potential of SWNT/GO as co-therapeutic agents with Tx for the treatment of lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the low temperature electrical and magnetic properties of polypyrrole (PPy)/multiwall carbon nanotube (MWNT) coaxial composite fibrils synthesized by the electro-polymerization method. The iron-filled MWNTs were first grown by chemical vapor deposition of a mixture of liquid phase organic compound and ferrocene by the one step method. Then the PPy/MWNT fibrils were prepared by the electrochemical polymerization process. Electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length. The temperature dependent electrical resistivity and magnetization measurements were done from room temperature down to 5 and 10 K, respectively. The room temperature resistivity (rho) of PPy/MWNT composite fibril sample is similar to 3.8 Omega m with resistivity ratio R-5 K/R-300 K] of similar to 300, and the analysis of rho(T) in terms of reduced activation energy shows that resistivity lies in the insulating regime below 40 K. The resistivity varies according to three dimensional variable range hopping mechanism at low temperature. The magnetization versus applied field (M-H loop) data up to a field of 20 kOe are presented, displaying ferromagnetic behavior at all temperatures with enhanced coercivities similar to 680 and 1870 Oe at room temperature and 10 K, respectively. The observation of enhanced coercivity is due to significant dipolar interaction among encapsulated iron nanoparticles, and their shape anisotropy contribution as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three samples of multiwall carbon nanotubes (MWCNT) TF200, TF150 and TF100, where T and F stand for toluene and ferrocene respectively, and numeral denotes the amount (mg) of ferrocene] filled with iron-nanoparticles (Fe-NPs) of different aspect ratios are grown by chemical vapor deposition of toluene-ferrocene mixture. Energy dispersive X-ray analysis shows a systematic variation in the intensities of peak corresponding to Fe, indicating that Fe is present in different amounts in the three MWCNT samples. The lengths of Fe-NPs lie in the range of 200-250; 80-120; and 30-40 nm for TF200, TF150 and TF100, respectively, as estimated statistically from transmission electron microscopy micrographs. However, the diameter of the encapsulated Fe-NPs does not vary significantly for different samples and is 20-30 nm for all samples. Hysteresis loop measurements on these MWCNT samples were done at 10, 150 and 300 K up to an applied field of 1.5 T. At 10 K, values of coercivity are 2584, 2315, and 2251 Oe for TF200, TF150 and TF100 respectively. This is attributed to the strong shape anisotropy of the Fe-NPs and significant dipolar interactions between them. Further, M-H loops reveal that saturation magnetization of TF200 is almost four times that of TF100 at all temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Managing heat produced by computer processors is an important issue today, especially when the size of processors is decreasing rapidly while the number of transistors in the processor is increasing rapidly. This poster describes a preliminary study of the process of adding carbon nanotubes (CNTs) to a standard silicon paste covering a CPU. Measurements were made in two rounds of tests to compare the rate of cool-down with and without CNTs present. The silicon paste acts as an interface between the CPU and the heat sink, increasing the heat transfer rate away from the CPU. To the silicon paste was added 0.05% by weight of CNTs. These were not aligned. A series of K-type thermocouples was used to measure the temperature as a function of time in the vicinity of the CPU, following its shut-off. An Omega data acquisition system was attached to the thermocouples. The CPU temperature was not measured directly because attachment of a thermocouple would have prevented its automatic shut-off A thermocouple in the paste containing the CNTs actually reached a higher temperature than the standard paste, an effect easily explained. But the rate of cooling with the CNTs was about 4.55% better.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization-induced phase separation and segmental relaxations in poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends was systematically investigated by melt-rheology and broadband dielectric spectroscopy in the presence of multiwall carbon nanotubes (MWNTs). Different functionalized MWNTs (amine, -NH2; acid, -COOH) were incorporated in the blends by melt-mixing above the melting temperature of PVDF, where the blends are miscible, and the crystallization induced phase separation was probed in situ by shear rheology. Interestingly, only -NH2 functionalized MWNTs (a-MWNTs) aided in the formation of beta-phase (trans-trans) crystals in PVDF, whereas both the neat blends and the blends with -COOH functionalized MWNTs (c-MWNTs) showed only alpha-phase (trans-gauche-trans-gauche') crystals as inferred from wide-angle X-ray diffraction (WXRD) and Fourier transform infrared (FTIR). Furthermore, blends with only a-MWNTs facilitated in heterogeneous nucleation in the blends manifesting in an increase in the calorimetric crystallization temperature and hence, augmented the theologically determined crystallintion induced phase separation temperature. The dielectric relaxations associated with the crystalline phase of PVDF (alpha(c)) was completely absent in the blends with a-MWNTs in contrast to neat blends and the blends with c-MWNTs in the dielectric loss spectra. The relaxations in the blends investigated here appeared to follow Havriliak-Negami (HN) empirical equations, and, more interestingly, the dynamic heterogeneity in the system could be mapped by an extra relaxation at higher frequency at the crystallization-induced phase separation temperature. The mean relaxation time (tau(HN)) was evaluated and observed to be delayed in the presence of MWNTs in the blends, more prominently in the case of blends with a-MWNTs. The latter also showed a significant increase in the dielectric relaxation strength (Delta epsilon). Electron microscopy and selective etching was used to confirm the localization of MWNTs in the amorphous phases of the interspherulitic regions as observed from scanning electron microscopy (SEM). The evolved crystalline morphology, during crystallization-induced phase separation, was observed to have a strong influence on the charge transport processes in the blends. These observations were further supported by the specific interactions (like dipole induced dipole interaction) between a-MWNTs and PVDF, as inferred from FTIR, and the differences in the crystalline morphology as observed from WXRD and polarized optical microscopy (POM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the growth of carbon nanoflakes (CNFs) on Si substrate by the hot filament chemical vapor deposition without the substrate bias or the catalyst. CNFs were grown using the single wall carbon nanotubes and the multiwall carbon nanotubes as the nucleation center, in the Ar-rich CH4-H-2-Ar precursor gas mixture with 1% CH4, at the chamber pressure and the substrate temperature of 7.5 Ton and 840 degrees C, respectively. In the H-2-rich condition, CNF synthesis failed due to severe etch-removal of carbon nanotubes (CNTs) while it was successful at the optimized Ar-rich condition. Other forms of carbon such as nano-diamond or mesoporous carbon failed to serve as the nucleation centers for the CNF growth. We proposed a mechanism of the CNF synthesis from the CNTs, which involved the initial unzipping of CNTs by atomic hydrogen and subsequent nucleation and growth of CNFs from the unzipped portion of the graphene layers. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5-330 mu epsilon) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT. (C) 2014 AIP Publishing LLC.