979 resultados para Distributed Mobility Context
Resumo:
Background: To develop and validate an item bank to measure mobility in older people in primary care and to analyse differential item functioning (DIF) and differential bundle functioning (DBF) by sex. Methods: A pool of 48 mobility items was administered by interview to 593 older people attending primary health care practices. The pool contained four domains based on the International Classification of Functioning: changing and maintaining body position, carrying, lifting and pushing, walking and going up and down stairs. Results: The Late Life Mobility item bank consisted of 35 items, and measured with a reliability of 0.90 or more across the full spectrum of mobility, except at the higher end of better functioning. No evidence was found of non-uniform DIF but uniform DIF was observed, mainly for items in the changing and maintaining body position and carrying, lifting and pushing domains. The walking domain did not display DBF, but the other three domains did, principally the carrying, lifting and pushing items. Conclusions: During the design and validation of an item bank to measure mobility in older people, we found that strength (carrying, lifting and pushing) items formed a secondary dimension that produced DBF. More research is needed to determine how best to include strength items in a mobility measure, or whether it would be more appropriate to design separate measures for each construct.
Resumo:
Background: The harmonization of European health systems brings with it a need for tools to allow the standardized collection of information about medical care. A common coding system and standards for the description of services are needed to allow local data to be incorporated into evidence-informed policy, and to permit equity and mobility to be assessed. The aim of this project has been to design such a classification and a related tool for the coding of services for Long Term Care (DESDE-LTC), based on the European Service Mapping Schedule (ESMS). Methods: The development of DESDE-LTC followed an iterative process using nominal groups in 6 European countries. 54 researchers and stakeholders in health and social services contributed to this process. In order to classify services, we use the minimal organization unit or “Basic Stable Input of Care” (BSIC), coded by its principal function or “Main Type of Care” (MTC). The evaluation of the tool included an analysis of feasibility, consistency, ontology, inter-rater reliability, Boolean Factor Analysis, and a preliminary impact analysis (screening, scoping and appraisal). Results: DESDE-LTC includes an alpha-numerical coding system, a glossary and an assessment instrument for mapping and counting LTC. It shows high feasibility, consistency, inter-rater reliability and face, content and construct validity. DESDE-LTC is ontologically consistent. It is regarded by experts as useful and relevant for evidence-informed decision making. Conclusion: DESDE-LTC contributes to establishing a common terminology, taxonomy and coding of LTC services in a European context, and a standard procedure for data collection and international comparison.
Resumo:
Aim: To analyze changes in access to health care and its determinants in the immigrant and native-born populations in Spain, before and during the economic crisis. Methods: Comparative analysis of two iterations of the Spanish National Health Survey (2006 and 2012). Outcome variables were: unmet need and use of different healthcare levels; explanatory variables: need, predisposing and enabling factors. Multivariate models were performed (1) to compare outcome variables in each group between years, (2) to compare outcome variables between both groups within each year, and (3) to determine the factors associated with health service use for each group and year. Results: unmet healthcare needs decreased in 2012 compared to 2006; the use of health services remained constant, with some changes worth highlighting, such as the decline in general practitioner visits among autochthons and a narrowed gap in specialist visits between the two populations. The factors associated with health service use in 2006 remained constant in 2012. Conclusion: Access to healthcare did not worsen, possibly due to the fact that, until 2012, the national health system may have cushioned the deterioration of social determinants as a consequence of the financial crisis. Further studies are necessary to evaluate the effects of health policy responses to the crisis after 2012.
Resumo:
On 1 October 2014, Marianne Thyssen, Commissioner-designate for Employment, Social Affairs, Skills and Labour Mobility, will face a European Parliament (EP) hearing. On this occasion, Thyssen will have to perform a delicate balancing act consisting of on the one hand, taking into consideration the significant budget constraints that a number of Member States are still facing and following the still prevailing political line of fiscal consolidation and sound public finances, and on the other hand, of demonstrating her strong commitment for Social Europe. In the context of the upcoming hearing, this commentary aims to outline the features, opportunities and challenges of the new portfolio related to employment and social affairs in view to providing an input into the political debate.
Resumo:
Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.
Resumo:
Global Software Development (GSD) is an emerging distributive software engineering practice, in which a higher communication overhead due to temporal and geographical separation among developers is traded with gains in reduced development cost, improved flexibility and mobility for developers, increased access to skilled resource-pools and convenience of customer involvements. However, due to its distributive nature, GSD faces many fresh challenges in aspects relating to project coordination, awareness, collaborative coding and effective communication. New software engineering methodologies and processes are required to address these issues. Research has shown that, with adequate support tools, Distributed Extreme Programming (DXP) – a distributive variant of an agile methodology – Extreme Programming (XP) can be both efficient and beneficial to GDS projects. In this paper, we present the design and realization of a collaborative environment, called Moomba, which assists a distributed team in both instantiation and execution of a DXP process in GSD projects.
Resumo:
Infrastructureless networks are becoming more popular with the increased prevalence of wireless networking technology. A significant challenge faced by these infrastructureless networks is that of providing security. In this paper we examine the issue of authentication, a fundamental component of most security approaches, and show how it can be performed despite an absence of trusted infrastructure and limited or no existing trust relationship between network nodes. Our approach enables nodes to authenticate using a combination of contextual information, harvested from the environment, and traditional authentication factors (such as public key cryptography). Underlying our solution is a generic threshold signature scheme that enables distributed generation of digital certificates.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.
Resumo:
This thesis presents the formal definition of a novel Mobile Cloud Computing (MCC) extension of the Networked Autonomic Machine (NAM) framework, a general-purpose conceptual tool which describes large-scale distributed autonomic systems. The introduction of autonomic policies in the MCC paradigm has proved to be an effective technique to increase the robustness and flexibility of MCC systems. In particular, autonomic policies based on continuous resource and connectivity monitoring help automate context-aware decisions for computation offloading. We have also provided NAM with a formalization in terms of a transformational operational semantics in order to fill the gap between its existing Java implementation NAM4J and its conceptual definition. Moreover, we have extended NAM4J by adding several components with the purpose of managing large scale autonomic distributed environments. In particular, the middleware allows for the implementation of peer-to-peer (P2P) networks of NAM nodes. Moreover, NAM mobility actions have been implemented to enable the migration of code, execution state and data. Within NAM4J, we have designed and developed a component, denoted as context bus, which is particularly useful in collaborative applications in that, if replicated on each peer, it instantiates a virtual shared channel allowing nodes to notify and get notified about context events. Regarding the autonomic policies management, we have provided NAM4J with a rule engine, whose purpose is to allow a system to autonomously determine when offloading is convenient. We have also provided NAM4J with trust and reputation management mechanisms to make the middleware suitable for applications in which such aspects are of great interest. To this purpose, we have designed and implemented a distributed framework, denoted as DARTSense, where no central server is required, as reputation values are stored and updated by participants in a subjective fashion. We have also investigated the literature regarding MCC systems. The analysis pointed out that all MCC models focus on mobile devices, and consider the Cloud as a system with unlimited resources. To contribute in filling this gap, we defined a modeling and simulation framework for the design and analysis of MCC systems, encompassing both their sides. We have also implemented a modular and reusable simulator of the model. We have applied the NAM principles to two different application scenarios. First, we have defined a hybrid P2P/cloud approach where components and protocols are autonomically configured according to specific target goals, such as cost-effectiveness, reliability and availability. Merging P2P and cloud paradigms brings together the advantages of both: high availability, provided by the Cloud presence, and low cost, by exploiting inexpensive peers resources. As an example, we have shown how the proposed approach can be used to design NAM-based collaborative storage systems based on an autonomic policy to decide how to distribute data chunks among peers and Cloud, according to cost minimization and data availability goals. As a second application, we have defined an autonomic architecture for decentralized urban participatory sensing (UPS) which bridges sensor networks and mobile systems to improve effectiveness and efficiency. The developed application allows users to retrieve and publish different types of sensed information by using the features provided by NAM4J's context bus. Trust and reputation is managed through the application of DARTSense mechanisms. Also, the application includes an autonomic policy that detects areas characterized by few contributors, and tries to recruit new providers by migrating code necessary to sensing, through NAM mobility actions.
Resumo:
In this report we discuss the problem of combining spatially-distributed predictions from neural networks. An example of this problem is the prediction of a wind vector-field from remote-sensing data by combining bottom-up predictions (wind vector predictions on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task can be achieved using the scaled-likelihood method, which has been used by Morgan and Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling
Resumo:
Nowadays, road safety and traffic congestion are major concerns worldwide. This is why research on vehicular communication is very vital. In static scenarios vehicles behave typically like in an office network where nodes transmit without moving and with no defined position. This paper analyses the impact of context information on existing popular rate adaptation algorithms. Our simulation was done in MATLAB by observing the impact of context information on these algorithms. Simulation was performed for both static and mobile cases.Our simulations are based on IEEE 802.11p wireless standard. For static scenarios vehicles do not move and without defined positions, while for the mobile case, vehicles are mobile with uniformly selected speed and randomized positions. Network performance are analysed using context information. Our results show that in mobility when context information is used, the system performance can be improved for all three rate adaptation algorithms. That can be explained by that with range checking, when many vehicles are out of communication range, less vehicles contend for network resources, thereby increasing the network performances. © 2013 IEEE.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.