701 resultados para Diphenyl ethers
Resumo:
Ten single benzyl phenyl ethers were synthesized and evaluated as human immunodeficiency virus-1 (HIV-1) inhibitors in vitro for the first time. Among these compounds, especially 4-nitrobenzyl phenyl ether (3h) exhibited the highest anti-HIV-1 activity wi
Resumo:
The autoignition characteristics of methanol, ethanol and MTBE (methyl tert-butyl ether) have been investigated in a rapid compression machine at pressures in the range 20-40 atm and temperatures within 750-1000 K. All three oxygenated fuels tested show higher autoignition temperatures than paraffins, a trend consistent with the high octane number of these fuels. The autoignition delay time for methanol was slightly lower than predicted values using reported reaction mechanisms. However, the experimental and measured values for the activation energy are in very good agreement around 44 kcal/mol. The measured activation energy for ethanol autoignition is in good agreement with previous shock tube results (31 kcal/mol), although ignition times predicted by the shock tube correlation are a factor of three lower than the measured values. The measured activation energy for MTBE, 41.4 kcal/mol, was significantly higher than the value previously observed in shock tubes (28.1 kcal/mol). The onset of preignition, characterized by a slow energy release prior to early ignition was observed in some instances. Possible reasons for these ocurrences are discussed. © Copyright 1993 Society of Automotive engineers, Inc.
Resumo:
This study was designed to determine cytotoxic effects of PBDE-47 and HBCDs individually or with a mixture of both compounds exposure to Hep G2 cells. The results showed PBDE-47 and HBCDs induced increase of nitric oxide synthase (NOS) activity, release of NO. dissipation of mitochondria membrane potential and cell apoptosis. Exposure to HBCDs induced ROS formation. Moreover, preincubation with PTIO (NO scavanger) and N-acetylcysteine (ROS scavanger) partially reversed cytotoxic effects of these compounds. The possible mechanism is that PBDE-47 and HBCDs could boost generation of NO and/or ROS, impact mitochondria, and result in start-ups of apoptosis program. Cells exposed to mixture of both compounds and each of them showed non-apoptotic rate significant difference, but the combination of them caused more adverse effects on cells. These results Suggest that PBDE-47 and HBCDs in single and complex exposure have the cytotoxic activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new class of ionophores with troponoid and thiocrown ether units was prepared. Cation-binding properties of troponoid dithiocrown ethers were characterized using UV and NMR spectroscopies. They have affinity with metal ions; in particular, they showed high affinity with Hg2+. Transport of Hg2+ through a CHCl3 liquid membrane with troponoid dithiocrown ethers was examined in a U-type cell. From an aqueous solution of HgCl2 and CuCl2, Hg2+ is transferred selectively and smoothly, while the Cu2+ remained quantitatively in the original solution. The cavity size of dithiocrown ethers is one of the requirements for effective extraction and transport of Hg2+. However, derivatives with a smaller cavity still extract and transport Hg2+. A polymer-supported troponoid dithiocrown ether was prepared to transport Hg2+ effectively and repeatedly. Comparing the troponoid dithiocrown ether with the benzenoid dithiocrown ether with a similar cavity size, the former was more effective for the transport of Hg2+. It is proposed that the tropone ring assisted the release of Hg2+ from the complex by Coulomb repulsion between the protonated tropone ring and Hg2+.
Resumo:
By introducing tungsten oxide (WO3) doped N,N-'-di(naphthalen-1-yl)-N,N-'-diphenyl-benzidine (NPB) hole injection layer, the great improvement in device efficiency and the organic film morphology stability at high temperature were realized for organic light-emitting diodes (OLEDs). The detailed investigations on the improvement mechanism by optical, electric, and film morphology properties were presented. The experimental results clearly demonstrated that using WO3 doped NPB as the hole injection layer in OLEDs not only reduced the hole injection barrier and enhanced the transport property, leading to low operational voltage and high efficiency, but also improved organic film morphology stability, which should be related to the device stability. It could be seen that due to the utilization of WO3 doped NPB hole injection layer in NPB/tris (8-quinolinolato) aluminum (Alq(3))-based device, the maximum efficiency reached 6.1 cd A(-1) and 4.8 lm W-1, which were much higher than 4.5 cd A(-1) and 1.1 lm W-1 of NPB/Alq(3) device without hole injection layer. The device with WO3 doped NPB hole injection layer yet gave high efficiency of 6.1 cd A(-1) (2.9 lm W-1) even though the device was fabricated at substrate temperature of 80 degrees C.
Resumo:
By incorporating 4,7-diphenyl- 2,1,3 benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light- emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (lambda max = 537 nm), the resulting polymers (lambda(max) = 521 nm) showed 10-20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/ polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A(-1) and power efficiency of 2.21 lm W-1. High EL efficiencies and good color purities made these polymers very promising for display applications.
Resumo:
The polymeric films have been prepared based on blends of chitosan with two cellulose ethers-hydroxypropylmethylcellulose and methylcellulose by casting from acetic acid solutions. The films were transparent and brittle in a dry state but an immersion of the samples in deionized water for over 24 h leads to their disintegration or partial dissolution. The miscibility of the polymers in the blends has been assessed by infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis. It was shown that although weak hydrogen bonding exists between the polymer functional groups the blends are not fully miscible in a dry state.
Resumo:
In this paper, the helix-sense-selective polymerization of N,N-diphenyl acrylamide (DPAA) and N,N-diplienyl methacrylamide(DPMAA) were studied with living helix prepolymer as anionic initiator, and the chiral optical properties of the obtained polymers were investigated too. It was shown that optically active polymers of DPAA and DPMAA could be obtained under the experimental condition, and exhibited the same screw sense as that of the prepolymer.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the methoxymethyl ion [CH3O=CH2](+) and the 1-hydroxyethyl ion [CH3CH=OH](+) generated under the self-chemical-ionization (self-CI) conditions of alkyl methyl ethers and primary alcohols were studied in the ion source of a mass spectrometer. The adduct ions [C60C2H5O](+) and protonated molecules [C60H](+) were observed as the major products of C-60 with the plasma of alkyl methyl ethers. On the contrary, the reactions of C-60 With the plasmas of primary alcohols produced few corresponding adduct ions. The AM1 semiempirical molecular orbital calculations were carried out on 14 possible structures. The calculated results showed that the most stable structure among the possible isomers of [C60C2H5O](+) is the [3+2] cycloadduct. According to experimental and theoretical results, the pathway for the formation of the adduct was presented.