961 resultados para Dim Target Detection
Resumo:
Surface plasmon resonance (SPR)-based biosensor is a popular platform for real-time monitoring and sensitive detection for a myriad of targets. However, only a few studies have reported the use of bacteriophages as specific binders for SPR-based detection. This study aimed to demonstrate how filamentous M13 bacteriophages expressing 12-mer peptides can be employed in an SPR-based assay, using a Salmonella-specific bacteriophage as a model binder to detect the foodborne bacterium Salmonella. Several important factors (immobilization buffers and methods, and interaction buffers) for a successful bacteriophage-based SPR assay were optimized. As a result, a Salmonella-specific bacteriophage-based SPR assay was achieved, with very low cross reactivity with other non-target foodborne pathogens and detection limits of 8.0 × 107 and 1.3 × 107 CFU/mL for one-time and five-time immobilized sensors, respectively. This proof-of-concept study demonstrates the feasibility of using M13 bacteriophages expressing target-specific peptides as a binder in a rapid and label-free SPR assay for pathogen detection.
Resumo:
Molecular diagnostic tests, based on the detection and identification of nucleic acids in human biological samples, are increasingly employed in the diagnosis of infectious diseases and may be of future benefit to CF microbiology services. Our growing understanding of the complex polymicrobial nature of CF airway infection has highlighted current and likely future shortcomings in standard diagnostic practices. Failure to detect fastidious or slow growing microbes and misidentification of newly emerging pathogens could potentially be addressed using culture-independent molecular technologies with high target specificity. This review considers existing molecular diagnostic tests in the context of the key requirements for an envisaged CF microbiology focussed assay. The issues of assay speed, throughput, detection of multiple pathogens, data interpretation and antimicrobial susceptibility testing are discussed.
Resumo:
A novel multiplexed immunoassay for the analysis of phycotoxins in shellfish samples has been developed. Therefore, a regenerable chemiluminescence (CL) microarray was established which is able to analyze automatically three different phycotoxins (domoic acid (DA), okadaic acid (OA) and saxitoxin (STX)) in parallel on the analysis platform MCR3. As a test format an indirect competitive immunoassay format was applied. These phycotoxins were directly immobilized on an epoxy-activated PEG chip surface. The parallel analysis was enabled by the simultaneous addition of all analytes and specific antibodies on one microarray chip. After the competitive reaction, the CL signal was recorded by a CCD camera. Due to the ability to regenerate the toxin microarray, internal calibrations of phycotoxins in parallel were performed using the same microarray chip, which was suitable for 25 consecutive measurements. For the three target phycotoxins multi-analyte calibration curves were generated. In extracted shellfish matrix, the determined LODs for DA, OA and STX with values of 0.5±0.3 µg L(-1), 1.0±0.6 µg L(-1), and 0.4±0.2 µg L(-1) were slightly lower than in PBS buffer. For determination of toxin recoveries, the observed signal loss in the regeneration was corrected. After applying mathematical corrections spiked shellfish samples were quantified with recoveries for DA, OA, and STX of 86.2%, 102.5%, and 61.6%, respectively, in 20 min. This is the first demonstration of an antibody based phycotoxin microarray.
Resumo:
This paper argues that biometric verification evaluations can obscure vulnerabilities that increase the chances that an attacker could be falsely accepted. This can occur because existing evaluations implicitly assume that an imposter claiming a false identity would claim a random identity rather than consciously selecting a target to impersonate. This paper shows how an attacker can select a target with a similar biometric signature in order to increase their chances of false acceptance. It demonstrates this effect using a publicly available iris recognition algorithm. The evaluation shows that the system can be vulnerable to attackers targeting subjects who are enrolled with a smaller section of iris due to occlusion. The evaluation shows how the traditional DET curve analysis conceals this vulnerability. As a result, traditional analysis underestimates the importance of an existing score normalisation method for addressing occlusion. The paper concludes by evaluating how the targeted false acceptance rate increases with the number of available targets. Consistent with a previous investigation of targeted face verification performance, the experiment shows that the false acceptance rate can be modelled using the traditional FAR measure with an additional term that is proportional to the logarithm of the number of available targets.
Resumo:
A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.
Resumo:
Background
Diabetic macular oedema (DMO) is a thickening of the central retina, or the macula, and is associated with long-term visual loss in people with diabetic retinopathy (DR). Clinically significant macular oedema (CSMO) is the most severe form of DMO. Almost 30 years ago, the Early Treatment Diabetic Retinopathy Study (ETDRS) found that CSMO, diagnosed by means of stereoscopic fundus photography, leads to moderate visual loss in one of four people within three years. It also showed that grid or focal laser photocoagulation to the macula halves this risk. Recently, intravitreal injection of antiangiogenic drugs has also been used to try to improve vision in people with macular oedema due to DR.Optical coherence tomography (OCT) is based on optical reflectivity and is able to image retinal thickness and structure producing cross-sectional and three-dimensional images of the central retina. It is widely used because it provides objective and quantitative assessment of macular oedema, unlike the subjectivity of fundus biomicroscopic assessment which is routinely used by ophthalmologists instead of photography. Optical coherence tomography is also used for quantitative follow-up of the effects of treatment of CSMO.
Objectives
To determine the diagnostic accuracy of OCT for detecting DMO and CSMO, defined according to ETDRS in 1985, in patients referred to ophthalmologists after DR is detected. In the update of this review we also aimed to assess whether OCT might be considered the new reference standard for detecting DMO.
Search methods
We searched the Cochrane Database of Systematic Reviews (CDSR), the Database of Abstracts of Reviews of Effects (DARE), the Health Technology Assessment Database (HTA) and the NHS Economic Evaluation Database (NHSEED) (The Cochrane Library 2013, Issue 5), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to June 2013), EMBASE (January 1950 to June 2013), Web of Science Conference Proceedings Citation Index - Science (CPCI-S) (January 1990 to June 2013), BIOSIS Previews (January 1969 to June 2013), MEDION and the Aggressive Research Intelligence Facility database (ARIF). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 25 June 2013. We checked bibliographies of relevant studies for additional references.
Selection Criteria
We selected studies that assessed the diagnostic accuracy of any OCT model for detecting DMO or CSMO in patients with DR who were referred to eye clinics. Diabetic macular oedema and CSMO were diagnosed by means of fundus biomicroscopy by ophthalmologists or stereophotography by ophthalmologists or other trained personnel.
Data collection and analysis
Three authors independently extracted data on study characteristics and measures of accuracy. We assessed data using random-effects hierarchical sROC meta-analysis models.
Main results
We included 10 studies (830 participants, 1387 eyes), published between 1998 and 2012. Prevalence of CSMO was 19% to 65% (median 50%) in nine studies with CSMO as the target condition. Study quality was often unclear or at high risk of bias for QUADAS 2 items, specifically regarding study population selection and the exclusion of participants with poor quality images. Applicablity was unclear in all studies since professionals referring patients and results of prior testing were not reported. There was a specific 'unit of analysis' issue because both eyes of the majority of participants were included in the analyses as if they were independent.In nine studies providing data on CSMO (759 participants, 1303 eyes), pooled sensitivity was 0.78 (95% confidence interval (CI) 0.72 to 0.83) and specificity was 0.86 (95% CI 0.76 to 0.93). The median central retinal thickness cut-off we selected for data extraction was 250 µm (range 230 µm to 300 µm). Central CSMO was the target condition in all but two studies and thus our results cannot be applied to non-central CSMO.Data from three studies reporting accuracy for detection of DMO (180 participants, 343 eyes) were not pooled. Sensitivities and specificities were about 0.80 in two studies and were both 1.00 in the third study.Since this review was conceived, the role of OCT has changed and has become a key ingredient of decision-making at all levels of ophthalmic care in this field. Moreover, disagreements between OCT and fundus examination are informative, especially false positives which are referred to as subclinical DMO and are at higher risk of developing clinical CSMO.
Authors' conclusions
Using retinal thickness thresholds lower than 300 µm and ophthalmologist's fundus assessment as reference standard, central retinal thickness measured with OCT was not sufficiently accurate to diagnose the central type of CSMO in patients with DR referred to retina clinics. However, at least OCT false positives are generally cases of subclinical DMO that cannot be detected clinically but still suffer from increased risk of disease progression. Therefore, the increasing availability of OCT devices, together with their precision and the ability to inform on retinal layer structure, now make OCT widely recognised as the new reference standard for assessment of DMO, even in some screening settings. Thus, this review will not be updated further.
Resumo:
In this paper we extend the minimum-cost network flow approach to multi-target tracking, by incorporating a motion model, allowing the tracker to better cope with longterm occlusions and missed detections. In our new method, the tracking problem is solved iteratively: Firstly, an initial tracking solution is found without the help of motion information. Given this initial set of tracklets, the motion at each detection is estimated, and used to refine the tracking solution.
Finally, special edges are added to the tracking graph, allowing a further revised tracking solution to be found, where distant tracklets may be linked based on motion similarity. Our system has been tested on the PETS S2.L1 and Oxford town-center sequences, outperforming the baseline system, and achieving results comparable with the current state of the art.
Resumo:
Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).
Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.
Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.
Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including chronic obstructive pulmonary disease (COPD). However, it’s detection and quantification in biological samples is confounded by a lack of reliable and robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex clinical samples containing multiple proteolytic and hydrolytic enzymes which have the ability to hydrolyse the substrate, thereby resulting in an over-estimation of the target protease. Furthermore, ELISA systems measure total protease levels which can be a mixture of latent, active and protease-inhibitor complexes. Therefore, we have developed a novel immunoassay (ProteaseTag™ Active NE Immunoassay) which is selective and specific for the capture of active NE in sputum and Bronchoalveolar Lavage (BAL) in patients with COPD. The objective of this study was to clinically validate ProteaseTag™ Active NE Ultra Immunoassay for the detection of NE in sputum from COPD patients. 20 matched sputum sol samples were collected from 10 COPD patients (M=6, F=4; 73 ± 6 years) during stable and exacerbation phases. Samples were assayed for NE activity utilising both ProteaseTag™ Active NE Ultra Immunoassay and a fluorogenic substrate-based kinetic activity assay. Both assays detected elevated levels of NE in the majority of patients (n=7) during an exacerbation (mean=217.2 μg/ml ±296.6) compared to their stable phase (mean=92.37 μg/ml ±259.8). However, statistical analysis did not show this difference to be significant (p=0.07, ProteaseTag™ Active NE Ultra Immunoassay; p=0.06 kinetic assay), most likely due to the low study number. A highly significant correlation was found between the 2 assay types (p≤0.0001, r=0.996). NE as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE Immunoassay specifically measures only active NE in clinical samples, is quick and easy to use (< 3 hours) and has no dependency on a kinetic readout. ProteaseTag™ technology is currently being transferred to a lateral flow device for use at Point of Care.
Resumo:
Introduction: Prevention, early detection and management of diabetes are fundamental for stopping this present epidemic. Medication review may contribute to the early detection of negative clinical outcomes risk factors associated to the use of medicines. Aims: To use the medication review to identify the situations that may lead to clinical negative outcomes, described as findings, in the process of medicines use in type 2 diabetic patients. To verify if the inclusion criteria list of the Pharmaceutical Society of Australia for medication review allows identifying patients of higher risks of obtaining clinical negative outcomes.
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stem-Volmer equation. The K-SV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 x 10(-7)-35.0 x 10(-7) M with a detection limit of 80 nM.
Resumo:
Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.
Resumo:
This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.