985 resultados para Digital image correlations
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.
Resumo:
Objective: The purpose of this study was to analyse the use of digital tools for image enhancement of mandibular radiolucent lesions and the effects of this manipulation on the percentage of correct radiographic diagnoses. Methods: 24 panoramic radiographs exhibiting radiolucent lesions were selected, digitized and evaluated by non-experts (undergraduate and newly graduated practitioners) and by professional experts in oral diagnosis. The percentages of correct and incorrect diagnoses, according to the use of brightness/contrast, sharpness, inversion, highlight and zoom tools, were compared. All dental professionals made their evaluations without (T-1) and with (T-2) a list of radiographic diagnostic parameters. Results: Digital tools were used with low frequency mainly in T-2. The most preferred tool was sharpness (45.2%). In the expert group, the percentage of correct diagnoses did not change when any of the digital tools were used. For the non-expert group, there was an increase in the frequency of correct diagnoses when brightness/contrast was used in T-2 (p = 0.008) and when brightness/contrast and sharpness were not used in T-1 (p = 0.027). The use or non-use of brightness/contrast, zoom and sharpness showed moderate agreement in the group of experts [kappa agreement coefficient (kappa) = 0.514, 0.425 and 0.335, respectively]. For the non-expert group there was slight agreement for all the tools used (kappa <= 0.237). Conclusions: Consulting the list of radiographic parameters before image manipulation reduced the frequency of tool use in both groups of examiners. Consulting the radiographic parameters with the use of some digital tools was important for improving correct diagnosis only in the group of non-expert examiners. Dentomaxillofacial Radiology (2012) 41, 203-210. doi: 10.1259/dmfr/78567773
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
Sustainable yields from water wells in hard-rock aquifers are achieved when the well bore intersects fracture networks. Fracture networks are often not readily discernable at the surface. Lineament analysis using remotely sensed satellite imagery has been employed to identify surface expressions of fracturing, and a variety of image-analysis techniques have been successfully applied in “ideal” settings. An ideal setting for lineament detection is where the influences of human development, vegetation, and climatic situations are minimal and hydrogeological conditions and geologic structure are known. There is not yet a well-accepted protocol for mapping lineaments nor have different approaches been compared in non-ideal settings. A new approach for image-processing/synthesis was developed to identify successful satellite imagery types for lineament analysis in non-ideal terrain. Four satellite sensors (ASTER, Landsat7 ETM+, QuickBird, RADARSAT-1) and a digital elevation model were evaluated for lineament analysis in Boaco, Nicaragua, where the landscape is subject to varied vegetative cover, a plethora of anthropogenic features, and frequent cloud cover that limit the availability of optical satellite data. A variety of digital image processing techniques were employed and lineament interpretations were performed to obtain 12 complementary image products that were evaluated subjectively to identify lineaments. The 12 lineament interpretations were synthesized to create a raster image of lineament zone coincidence that shows the level of agreement among the 12 interpretations. A composite lineament interpretation was made using the coincidence raster to restrict lineament observations to areas where multiple interpretations (at least 4) agree. Nine of the 11 previously mapped faults were identified from the coincidence raster. An additional 26 lineaments were identified from the coincidence raster, and the locations of 10 were confirmed by field observation. Four manual pumping tests suggest that well productivity is higher for wells proximal to lineament features. Interpretations from RADARSAT-1 products were superior to interpretations from other sensor products, suggesting that quality lineament interpretation in this region requires anthropogenic features to be minimized and topographic expressions to be maximized. The approach developed in this study has the potential to improve siting wells in non-ideal regions.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
The paper showcases the field- and lab-documentation system developed for Kinneret Regional Project, an international archaeological expedition to the Northwestern shore of the Sea of Galilee (Israel) under the auspices of the University of Bern, the University of Helsinki, Leiden University and Wofford College. The core of the data management system is a fully relational, server-based database framework, which also includes time-based and static GIS services, stratigraphic analysis tools and fully indexed document/digital image archives. Data collection in the field is based on mobile, hand-held devices equipped with a custom-tailored stand-alone application. Comprehensive three-dimensional documentation of all finds and findings is achieved by means of total stations and/or high-precision GPS devices. All archaeological information retrieved in the field – including tachymetric data – is synched with the core system on the fly and thus immediately available for further processing in the field lab (within the local network) or for post-excavation analysis at remote institutions (via the WWW). Besides a short demonstration of the main functionalities, the paper also presents some of the key technologies used and illustrates usability aspects of the system’s individual components.
Resumo:
Se propone la producción y posterior análisis de obras digitales que presenta una elaboración teórica-práctica intrínseca como sustento de las nuevas categorías y neologismos surgidos dentro del ámbito artístico digital. Se estudian distintas aplicaciones, modalidades de creación, exposición y transferencia al medio como así también las posibilidades relacionales que surgen entre imagen digital, objeto artístico y diseño de productos traspasando las fronteras de campos disciplinares como Arte y Diseño. La metodología empleada se concentra en enfoques sociológicos y semiótico-pragmáticos que permiten realizar un análisis profundo de las obras digitales en sí mismas y en relación a los contextos de producción, circulación, exposición y consumo.
Resumo:
El objetivo fue determinar, durante dos años, el contenido de β-caroteno y su relación con el Índice de Color (IC), de ocho cultivares comerciales del tipo 'Flakkee' cultivadas en el INTA La Consulta. El diseño experimental a campo utilizado fue en bloques al azar con 3 repeticiones. Se evaluó β-caroteno (espectrofotometría a 450 nm) y se calculó el IC, mediante captación de imagen digital con PC y escáner, midiendo L, a y b del Sistema CIELAB. Los datos fueron analizados por ACP (análisis de componentes principales), la visualización de la variabilidad, por cartografiado de datos, análisis de varianza, pruebas de diferencia de medias y correlaciones. Los contenidos de β-carotenos y el IC de los cultivares se mantuvieron constantes durante los dos años estudiados, resultando las cultivares Natasha, Flakesse y Colmar las de mayor valor nutricional en cuanto a aporte de β-carotenos. En el rango de valores menores de 18 mg%g de β-carotenos, se observó una correlación positiva significativa en las cultivares Supreme, Spring y Laval. No se encontró una correlación alta lineal entre el IC y el contenido de β-carotenos. El uso del IC resulta adecuado para predecir, en un intervalo de valores, el contenido de β-carotenos en cultivares de zanahoria.
Resumo:
Technological and environmental problems related to ore processing are a serious limitation for sustainable development of mineral resources, particularly for countries / companies rich in ores, but with little access to sophisticated technology, e.g. in Latin America. Digital image analysis (DIA) can provide a simple, unexpensive and broadly applicable methodology to assess these problems, but this methodology has to be carefully defined, to produce reproducible and relevant information.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi-Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles' state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle's state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle's state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).
Resumo:
Matlab, uno de los paquetes de software matemático más utilizados actualmente en el mundo de la docencia y de la investigación, dispone de entre sus muchas herramientas una específica para el procesado digital de imágenes. Esta toolbox de procesado digital de imágenes está formada por un conjunto de funciones adicionales que amplían la capacidad del entorno numérico de Matlab y permiten realizar un gran número de operaciones de procesado digital de imágenes directamente a través del programa principal. Sin embargo, pese a que MATLAB cuenta con un buen apartado de ayuda tanto online como dentro del propio programa principal, la bibliografía disponible en castellano es muy limitada y en el caso particular de la toolbox de procesado digital de imágenes es prácticamente nula y altamente especializada, lo que requiere que los usuarios tengan una sólida formación en matemáticas y en procesado digital de imágenes. Partiendo de una labor de análisis de todas las funciones y posibilidades disponibles en la herramienta del programa, el proyecto clasificará, resumirá y explicará cada una de ellas a nivel de usuario, definiendo todas las variables de entrada y salida posibles, describiendo las tareas más habituales en las que se emplea cada función, comparando resultados y proporcionando ejemplos aclaratorios que ayuden a entender su uso y aplicación. Además, se introducirá al lector en el uso general de Matlab explicando las operaciones esenciales del programa, y se aclararán los conceptos más avanzados de la toolbox para que no sea necesaria una extensa formación previa. De este modo, cualquier alumno o profesor que se quiera iniciar en el procesado digital de imágenes con Matlab dispondrá de un documento que le servirá tanto para consultar y entender el funcionamiento de cualquier función de la toolbox como para implementar las operaciones más recurrentes dentro del procesado digital de imágenes. Matlab, one of the most used numerical computing environments in the world of research and teaching, has among its many tools a specific one for digital image processing. This digital image processing toolbox consists of a set of additional functions that extend the power of the digital environment of Matlab and allow to execute a large number of operations of digital image processing directly through the main program. However, despite the fact that MATLAB has a good help section both online and within the main program, the available bibliography is very limited in Castilian and is negligible and highly specialized in the particular case of the image processing toolbox, being necessary a strong background in mathematics and digital image processing. Starting from an analysis of all the available functions and possibilities in the program tool, the document will classify, summarize and explain each function at user level, defining all input and output variables possible, describing common tasks in which each feature is used, comparing results and providing illustrative examples to help understand its use and application. In addition, the reader will be introduced in the general use of Matlab explaining the essential operations within the program and clarifying the most advanced concepts of the toolbox so that an extensive prior formation will not be necessary. Thus, any student or teacher who wants to start digital image processing with Matlab will have a document that will serve to check and understand the operation of any function of the toolbox and also to implement the most recurrent operations in digital image processing.