967 resultados para Digital Image Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mineralogía de procesos se ha convertido en los últimos años en una herramienta indispensable dentro del ámbito minero-metalúrgico debido fundamentalmente a la emergencia de la Geometalurgia. Esta disciplina en auge, a través de la integración de datos geológicos, mineros y metalúrgicos, proporciona la información necesaria para que el circuito de concentración mineral pueda responder de manera rápida y eficaz a la variabilidad mineralógica inherente a la geología del yacimiento. Para la generación del modelo geometalúrgico, la mineralogía de procesos debe aportar datos cuantitativos sobre los rasgos mineralógicos influyentes en el comportamiento de los minerales y para ello se apoya en el uso de sistemas de análisis mineralógico automatizado. Estos sistemas son capaces de proporcionar gran cantidad de datos mineralógicos de manera rápida y precisa. Sin embargo, cuando se trata de la caracterización de la textura, el mineralogista debe recurrir a descripciones cualitativas basadas en la observación, ya que los sistemas actuales no ofrecen información textural automatizada. Esta tesis doctoral surge precisamente para proporcionar de manera sistemática información textural relevante para los procesos de concentración mineral. La tesis tiene como objetivo principal la identificación y caracterización del tipo de intercrecimiento que un determinado mineral presenta en las partículas minerales, e inicialmente se han tenido en cuenta los siete tipos de intercrecimiento considerados como los más relevantes bajo el punto de vista del comportamiento de las partículas minerales durante flotación, lixiviación y molienda. Para alcanzar este objetivo se ha desarrollado una metodología basada en el diseño y cálculo de una serie de índices numéricos, a los que se ha llamado índices mineralúrgicos, que cumplen una doble función: por un lado, cada índice aporta información relevante para caracterizar los principales rasgos mineralógicos que gobiernan el comportamiento de las partículas minerales a lo largo de los procesos de concentración y por otro lado, estos índices sirven como variables discriminantes para identificar el tipo de intercrecimiento mineral mediante la aplicación de Análisis Discriminante. Dentro del conjunto de índices propuestos en este trabajo, se han considerado algunos índices propuestos por otros autores para su aplicación tanto en el ámbito de la mineralogía como en otros ámbitos de la ciencia de materiales. Se trata del Índice de Contigüidad (Gurland, 1958), Índice de Intercrecimiento (Amstutz y Giger, 1972) e Índice de Coordinación (Jeulin, 1981), adaptados en este caso para el análisis de partículas minerales. El diseño de los índices se ha basado en los principios básicos de la Estereología y el análisis digital de imagen, y su cálculo se ha llevado a cabo aplicando el método de interceptos lineales mediante la programación en MATLAB de varias rutinas. Este método estereológico permite recoger una serie de medidas a partir de las que es posible calcular varios parámetros, tanto estereológicos como geométricos, que han servido de base para calcular los índices mineralúrgicos. Para evaluar la capacidad discriminatoria de los índices mineralúrgicos se han seleccionado 200 casos en los que se puede reconocer de manera clara alguno de los siete tipos de intercrecimiento considerados inicialmente en este trabajo. Para cada uno de estos casos se han calculado los índices mineralúrgicos y se ha aplicado Análisis Discriminante, obteniendo un porcentaje de acierto en la clasificación del 95%. Esta cifra indica que los índices propuestos son discriminadores fiables del tipo de intercrecimiento. Una vez probada la capacidad discriminatoria de los índices, la metodología desarrollada ha sido aplicada para caracterizar una muestra de un concentrado de cobre procedente de la mina Kansanshi (Zambia). Esta caracterización se ha llevado a cabo para obtener la distribución de calcopirita según su tipo de intercrecimiento. La utilidad de esta distribución ha sido analizada bajo diferentes puntos de vista y en todos ellos los índices mineralúrgicos aportan información valiosa para caracterizar el comportamiento mineralúrgico de las partículas minerales. Los resultados derivados tanto del Análisis Discriminante como de la caracterización del concentrado de Kansanshi muestran la fiabilidad, utilidad y versatilidad de la metodología desarrollada, por lo que su integración como herramienta rutinaria en los sistemas actuales de análisis mineralógico pondría a disposición del mineralurgista gran cantidad de información textural complementaria a la información ofrecida por las técnicas actuales de caracterización mineralógica. ABSTRACT Process mineralogy has become in the last decades an essential tool in the mining and metallurgical sphere, especially driven by the emergence of Geometallurgy. This emergent discipline provides required information to efficiently tailor the circuit performance to the mineralogical variability inherent to ore deposits. To contribute to the Geometallurgical model, process mineralogy must provide quantitative data about the main mineralogical features implied in the minerallurgical behaviour of minerals. To address this characterisation, process mineralogy relies on automated systems. These systems are capable of providing a large amount of data quickly and accurately. However, when it comes to the characterisation of texture, mineralogists need to turn to qualitative descriptions based on observation, due to the fact that current systems can not offer quantitative textural information in a routine way. Aiming at the automated characterisation of textural information, this doctoral thesis arises to provide textural information relevant for concentration processes in a systematic way. The main objective of the thesis is the automated identification and characterisation of intergrowth types in mineral particles. Initially, the seven intergrowth types most relevant for flotation, leaching and grinding are considered. To achieve this goal, a methodology has been developed based on the computation of a set of numerical indices, which have been called minerallurgical indices. These indices have been designed with two main purposes: on the one hand, each index provides information to characterise the main mineralogical features which determine particle behaviour during concentration processes and, on the other hand, these indices are used as discriminant variables for identifying the intergrowth type by Discriminant Analysis. Along with the indices developed in this work, three indices proposed by other authors belonging to different fields of materials science have been also considered after being adapted to the analysis of mineral particles. These indices are Contiguity Index (Gurland, 1958), Intergrowth Index (Amstutz and Giger, 1972) and Coordination Index (Jeulin, 1981). The design of minerallurgical indices is based on the fundamental principles of Stereology and Digital Image Analysis. Their computation has been carried out using the linear intercepts method, implemented by means of MATLAB programming. This stereological method provides a set of measurements to obtain several parameters, both stereological and geometric. Based on these parameters, minerallurgical indices have been computed. For the assessment of the discriminant capacity of the developed indices, 200 cases have been selected according to their internal structure, so that one of the seven intergrowth types initially considered in this work can be easily recognised in any of their constituents. Minerallurgical indices have been computed for each case and used as discriminant variables. After applying discriminant analysis, 95% of the cases were correctly classified. This result shows that the proposed indices are reliable identifiers of intergrowth type. Once the discriminant power of the indices has been assessed, the developed methodology has been applied to characterise a copper concentrate sample from the Kansanshi copper mine (Zambia). This characterisation has been carried out to quantify the distribution of chalcopyrite with respect to intergrowth types. Different examples of the application of this distribution have been given to test the usefulness of the method. In all of them, the proposed indices provide valuable information to characterise the minerallurgical behaviour of mineral particles. Results derived from both Discriminant Analysis and the characterisation of the Kansanshi concentrate show the reliability, usefulness and versatility of the developed methodology. Therefore, its integration as a routine tool in current systems of automated mineralogical analysis should make available for minerallurgists a great deal of complementary information to treat the ore more efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moment invariants have been thoroughly studied and repeatedly proposed as one of the most powerful tools for 2D shape identification. In this paper a set of such descriptors is proposed, being the basis functions discontinuous in a finite number of points. The goal of using discontinuous functions is to avoid the Gibbs phenomenon, and therefore to yield a better approximation capability for discontinuous signals, as images. Moreover, the proposed set of moments allows the definition of rotation invariants, being this the other main design concern. Translation and scale invariance are achieved by means of standard image normalization. Tests are conducted to evaluate the behavior of these descriptors in noisy environments, where images are corrupted with Gaussian noise up to different SNR values. Results are compared to those obtained using Zernike moments, showing that the proposed descriptor has the same performance in image retrieval tasks in noisy environments, but demanding much less computational power for every stage in the query chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process mineralogy provides the mineralogical information required by geometallurgists to address the inherent variation of geological data. The successful benefitiation of ores mostly depends on the ability of mineral processing to be efficiently adapted to the ore characteristics, being liberation one of the most relevant mineralogical parameters. The liberation characteristics of ores are intimately related to mineral texture. Therefore, the characterization of liberation necessarily requieres the identification and quantification of those textural features with a major bearing on mineral liberation. From this point of view grain size, bonding between mineral grains and intergrowth types are considered as the most influential textural attributes. While the quantification of grain size is a usual output of automated current technologies, information about grain boundaries and intergrowth types is usually descriptive and difficult to quantify to be included in the geometallurgical model. Aiming at the systematic and quantitative analysis of the intergrowth type within mineral particles, a new methodology based on digital image analysis has been developed. In this work, the ability of this methodology to achieve a more complete characterization of liberation is explored by the analysis of chalcopyrite in the rougher concentrate of the Kansanshi copper-gold mine (Zambia). Results obtained show that the method provides valuable textural information to achieve a better understanding of mineral behaviour during concentration processes. The potential of this method is enhanced by the fact that it provides data unavailable by current technologies. This opens up new perspectives on the quantitative analysis of mineral processing performance based on textural attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss some main image processing techniques in order to propose a classification based upon the output these methods provide. Because despite a particular image analysis technique can be supervised or unsupervised, and can allow or not the existence of fuzzy information at some stage, each technique has been usually designed to focus on a specific objective, and their outputs are in fact different according to each objective. Thus, they are in fact different methods. But due to the essential relationship between them they are quite often confused. In particular, this paper pursues a clarification of the differences between image segmentation and edge detection, among other image processing techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drill cores are essential for the study of deep-sea sediments and on-land sites because often no suitable outcrop is available or accessible. These cores form the backbone of stratigraphical studies using and combining various dating techniques. Cyclostratigraphy is usually based on fast and inexpensive measurements of physical sediment properties. One indirect but highly valuable proxy for reconstructing the sediment composition and variability is sediment color. However, cracks and other disturbances in sediment cores may dramatically influence the quality of color data retrieved either directly from photospectrometry or derived from core image analysis. Here we present simple but powerful algorithms to extract color data from core images, and focus on routines to exclude cracks from these images. Results are discussed using the example of an ODP core from the Ceara Rise in the Central Atlantic. The crack correction approach presented highly improves the quality of color data and allows the easy incorporation of cracked cores into studies based on core images. This facilitates the quick and inexpensive generation of large color datasets directly from quantified core images, for cyclostratigraphy and other purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Report no. FHWA-IL-UI-278"--Technical report documentation page.