852 resultados para Difference Between Generation X and Y Employees
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study assessed the effect of different etching durations of feldspathic ceramic with hydrofluoric acid (HF) and ultrasonic cleaning of the etched ceramic surface on the microtensile bond strength stability of resin to a feldspathic ceramic. The research hypotheses investigated were: (1) different etching times would not affect the adhesion resistance and (2) ultrasonic cleaning would improve the adhesion. Ceramic blocks (6 x 6 x 5 mm) (N = 48) were obtained. The cementations surfaces were duplicated in resin composite. The six study groups (n = 8) were: G1Etching with 10% aqueous HF (30 s) + silane; G 210% HF (1 min) + silane; G3-10% HF (2 min) + silane; G4-10% HF (30 s) + ultrasonic cleaning (4 min) in distilled water + silane; G5-10% HF (1 min) + ultrasonic cleaning + silane; G6-10% HF (2 min) ultrasonic cleaning + silane. The cemented blocks were sectioned into microbars for the microtensile test. The etching duration did not create significant difference among the groups (p = .156) but significant influence of ultrasonic cleaning was observed (p = .001) (Two-way ANOVA and Tukey's test, p > 0.05). All the groups after ultrasonic cleaning presented higher bond strength (19.38-20.08 MPa) when compared with the groups without ultrasonic cleaning (16.2117.75 MPa). The bond strength between feldspathic ceramic and resin cement was not affected by different etching durations using HF. Ultrasonic cleaning increased the bond strength between ceramic surface and resin cement, regardless of the etching duration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (mu CT). Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections), teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (mu CT), teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF) system (SybronEndo, Orange, USA), and mesiolingual canals, with the Endo Sequence (ES) system (Brasseler, Savannah, USA). Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05). The canal transportation results were significantly lower (0.056 mm) in G2 than in G1 (0.089 mm) (p = 0.0012). The mu CT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.
Resumo:
To compare the intravascular ultrasound virtual histology (IVUS-VH) appearance of the polymeric struts of the first (Revision 1.0) and the second (Revision 1.1) generation bioresorbable vascular scaffold (BVS).
Resumo:
To analyse the outcome and need for intervention [surgery or thoracic endovascular aortic repair (TEVAR)] in patients after surgery for remaining type B dissection after type A repair and primary type B aortic dissection.
Resumo:
The aim of this study was to evaluate whether measurements performed on conventional frontal radiographs are comparable to measurements performed on three-dimensional (3D) models of human skulls derived from cone beam computed tomography (CBCT) scans and if the latter can be used in longitudinal studies. Cone beam computed tomography scans and conventional frontal cephalometric radiographs were made of 40 dry human skulls. From the CBCT scan a 3D model was constructed. Standard cephalometric software was used to identify landmarks and to calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs, and on all images, five times with a time interval of 1 wk. Intra-observer reliability was acceptable for all measurements. There was a statistically significant and clinically relevant difference between measurements performed on conventional frontal radiographs and on 3D CBCT-derived models of the same skull. There was a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements performed on 3D models constructed from CBCT scans. We therefore recommend that 3D models should not be used for longitudinal research in cases where there are only two-dimensional (2D) records from the past.
Resumo:
In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems
Resumo:
In the present study the challenge of analyzing complex micro X-ray diffraction (microXRD) patterns from cement–clay interfaces has been addressed. In order to extract the maximum information concerning both the spatial distribution and the crystal structure type associated with each of the many diffracting grains in heterogeneous, polycrystalline samples, an approach has been developed in which microXRD was applied to thin sections which were rotated in the X-ray beam. The data analysis, performed on microXRD patterns collected from a filled vein of a cement–clay interface from the natural analogue in Maqarin (Jordan), and a sample from a two-year-old altered interface between cement and argillaceous rock, demonstrate the potential of this method.
Resumo:
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.
Resumo:
Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^