982 resultados para Deuteric fluids


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In practice, polyvinyl chloride endotracheal tubes and polyurethane urinary catheters are located in areas where they are exposed to the conditioning fluids saliva and urine, respectively. Samples of both biomaterials were incubated in these conditioning fluids and, following treatment, dynamic contact angle measurement and surface roughness assessment by atomic force microscopy were used to analyse surface characteristics. Over a 24 h period of contact with the conditioning fluids, the surface of both materials became significantly more hydrophilic (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The joint fluids of 37 patients with rheumatoid arthritis, eight patients with traumatic injuries to their joints, two patients with Reiter's syndrome and three patients with psoriatic arthritis were tested for the presence of B cell colony stimulating activity (B cell CSA). B cell CSA was found in all of the joint fluids from the patients with rheumatoid arthritis but in none of the joint fluids from patients with traumatic injuries to their joints or in the joint fluids from the patients with Reiter's syndrome. A trace of B cell CSA was found in the joint fluid of one of the three patients with psoriatic arthritis. There was a positive correlation (r = 0.796) between the amount of rheumatoid factor present in the joint fluids and the titre of B cell CSA. This correlation was highly significant (P less than 0.001). The B cell CSA was localized to component(s) with molecular weight ranges 115-129 kD and 64-72 kD and an isoelectric point of 6.8. Its activity was sensitive to reduction with 2-mercaptoethanol and to the oxidising action of potassium periodate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subduction modifies the cycling of Earth's volatile elements. Fluid-rich sediments and hydrated oceanic lithosphere enter the convecting mantle at subduction zones. Some of the sediments and volatile components are released from the subducting slab, promote mantle melting and are returned to the surface by volcanism. The remainder continue into the deeper mantle. Quantification of the fate of these volatiles requires an understanding of both the nature and timing of fluid release and mantle melting(1). Here we analyse the trace element and isotopic geochemistry of fragments of upper mantle rocks that were transported to the surface by volcanic eruptions above the Batan Island subduction zone, Philippines. We find that the mantle fragments exhibit extreme disequilibrium between their U-Th-Ra isotopic ratios, which we interpret to result from the interaction of wet sediment melts and slab-derived fluids with rocks in the overlying mantle wedge. We infer that wet sediments were delivered from the slab to the mantle wedge between 8,000 and 10,000 years ago, whereas aqueous fluids were delivered separately much later. We estimate that about 625 ppm of water is retained in the wedge. A significant volume of water could therefore be delivered to the mantle transition zone at the base of the upper mantle, or even to the deeper mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear and corrosion of metal-on-metal hip replacements results in wear debris and metal-ion release in vivo, which may subsequently cause pain and hypersensitivity for patients. Retrieved metal-on-metal hip replacements have revealed that two-body sliding wear and three-body abrasive wear are the predominant wear mechanisms. However, there is a lack of understanding of the combined effects of wear/corrosion, especially the effect of abrasion-corrosion.

This study investigates the sliding-corrosion and abrasion-corrosion performance of a cast CoCrMo alloy in simulated hip joint environments using a microabrasion rig integrated with an electrochemical cell. Tests have been conducted in 0.9% NaCl, phosphate buffered saline solution, 25% and 50% bovine serum solutions with 0 or 1 g cm(-3) SiC at 37 degrees C. Experimental results reveal that under abrasion-corrosion test conditions, the presence of proteins increased the total specific wear rate. Conversely, electrochemical noise measurements indicated that the average anodic current levels were appreciably lower for the proteinaceous solutions when compared with the inorganic solutions. A severely deformed nanocrystalline layer was identified immediately below the worn surface for both proteinaceous and inorganic solutions. The layer is formed by a recrystallisation process and/or a strain-induced phase transformation that occurs during microabrasion-corrosion. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some retrieved CoCrMo hip implants have shown that abrasive wear is one of the possible wear mechanisms invoked within such joints. To date, little work has focused on the third body abrasion of CoCrMo and therefore there is a general lack of understanding of the effect of abrasive size and volume concentration on the tribo-corrosion performance of the CoCrMo alloys. The present work assessed the tribo-corrosion behaviour of cast CoCrMo (F-75) under various abrasion-corrosion conditions by using a modified microabrasion tester incorporating a three-electrode electrochemical cell. The effects of reduced abrasive size/hardness and volume concentration, as well as the role of proteins on the tribo-corrosion performance of the cast CoCrMo alloy were addressed. The correlation between electrochemical and mechanical processes for different abrasion-corrosion test conditions has been discussed in detail. Results show that the reduction in abrasive size and volume concentration can significantly affect the abrasion-corrosion wear mechanisms and the wear-induced corrosion response of the material. The finding of this study implies that the smaller/softer third body particles generated in vivo could also result in significant wear-induced corrosion and therefore potential metal ion release, which could be potentially detrimental to both the patient health and the life span of the implants. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of any drilling cuttings pile removal process the requirement for monitoring the release of contaminants into the marine environment will be critical. Traditional methods for such monitoring involve taking samples for laboratory analysis. This process is time consuming and only provides data on spot samples taken from a limited number of locations and time frames. Such processes, therefore, offer very restricted information. The need for improved marine sensors for monitoring contaminants is established. We report here the development and application of a multi-capability optical sensor for the real-time in situ monitoring of three key marine environmental and offshore/oil parameters: hydrocarbons, synthetic-based fluids and heavy metal concentrations. The use of these sensors will be a useful tool for real-time in situ environmental monitoring during the process of decommissioning offshore structures. Multi-capability array sensors could also provide information on the dispersion of contamination from drill cuttings piles either while they are in situ or during their removal.