980 resultados para Dermatan Sulfate
Resumo:
The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing d34S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.
Resumo:
Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40 mg/L, d34Ssulfate values between -3.0 and -20.0‰, and d18Osulfate values between +1.5 and +5.0‰; nitrate was characterized by concentrations varying between
Resumo:
Abstract 02665
Resumo:
Throughout the last few decades, sulfate concentrations in streamwater have received considerable attention due to their dominant role in anthropogenic acidification of surface waters. The objectives of this study conducted in the Oldman River Basin in Alberta (Canada) were to determine the influence of geology, land use and anthropogenic activities on sources, concentrations and fluxes of riverine sulfate on a watershed scale. This was achieved by combining hydrological, chemical and isotopic techniques. Surface water samples were collected from the main stem and tributaries of the Oldman River on a monthly basis between December 2000 and March 2003 and analyzed for chemical and isotopic compositions. At a given sampling site, sulfate sources were primarily dependent on geology and did not vary with time or flow condition. With increasing flow distance a gradual shift from ?34S values > 10 ‰ and ?18O values > 0 ‰ of riverine sulfate indicating evaporite dissolution and soil-derived sulfate in the predominantly forested headwaters, to negative ?34S and ?18O values suggested that sulfide oxidation was the predominant sulfate source in the agriculturally used downstream part of the watershed. Significant increases in sulfate concentrations and fluxes with downstream distance were observed, and were attributed to anthropogenically enhanced sulfide oxidation due to the presence of an extensive irrigation drainage network with seasonally varying water levels. Sulfate-S exports in an artificially drained subbasin (64 kg S/ha/yr) were found to exceed those in a naturally drained subbasin (4 kg S/ha/yr) by an order of magnitude. Our dataset suggests that the naturally occurring process of sulfide oxidation has been enhanced in the Oldman River Basin by the presence of an extensive network of drainage and irrigation canals.
Resumo:
The facile syntheses of 1,2- and 3,5-cyclic sulfite and sulfate furanoside diesters were conducted in molecular solvents and ionic liquids in the presence of immobilised morpholine. Molecular solvents and ionic liquids performed similarly with regards to overall yields. However, the use of ILs allowed for the reactions to be carried out under atmospheric conditions and showed good recyclability. Additionally, increases in product stability was achieved in ILs over organic solvents, in particular, in bis{(trifluoromethanesulfonyl)imide) and trispentafluoro-ethyltrifluorophosphate-based ionic liquids, which were also excellent media to control the hydrolysis of thionyl chloride and sulfuryl chloride. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.
Resumo:
There is growing interest in the application of electrode-based measurements for monitoring microbial processes in the Earth using biogeophysical methods. In this study, reactive electrode measurements were combined to electrical geophysical measurements during microbial sulfate reduction occurring in a column of silica beads saturated with natural river water. Electrodic potential (EP), self potential (SP) and complex conductivity signals were recorded using a dual electrode design (Ag/AgCl metal as sensing/EP electrode, Ag/AgCl metal in KCl gel as reference/SP electrode). Open-circuit potentials, representing the tendency for electrochemical reactions to occur on the electrode surfaces, were recorded between sensing/EP electrode and reference/SP electrode and showed significant spatiotemporal variability associated with microbial activity. The dual electrode design isolates the microbial driven sulfide reactions to the sensing electrode and permits removal of any SP signal from the EP measurement. Based on the known sensitivity of a Ag electrode to dissolved sulfide, we interpret EP signals exceeding 550 mV recorded in this experiment in terms of bisulfide (HS-) concentration near multiple sensing electrodes. Complex conductivity measurements capture an imaginary conductivity (s?) signal interpreted as the response of microbial growth and biomass formation in the column. Our results suggest that the implementation of multipurpose electrodes, combining reactive measurements with electrical geophysical measurements, could improve efforts to monitor microbial processes in the Earth using electrodes.