216 resultados para Depressions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composition and abundance of modern benthic foraminifers in the littoral zone of the Kunashir Island (South Kuriles) were studied. This littoral zone was examined on the sides of the Sea of Okhotsk, the Pacific Ocean, and the Izmena Bay. In the littoral zone of the Izmena Bay benthic foraminifers were not found. The highest biodiversity and maximal density of foraminifers were observed at a bench among rocks and blocks, in depressions of various size and depth (baths), at places where algae and water plants were attached, on silty sands, and on sands with admixture of broken shells, silt, and clastic matter composing the coast. The lowest density and biodiversity were found in mouths of creeks and rivers, on rock plates free from sediments and attached algae and water plants, as well as in places not protected from wind and wave activity. It was established that on both sides of the Sea of Okhotsk and of the Pacific Ocean foraminiferal complexes vary both in biodiversity and in density of their distribution in the littoral zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuously influence of human impacts on the seafloor and benthic habitats demands the knowledge of clearly defined habitats to assess recent conditions and to monitor future changes. In this study, a benthic habitat dominated by sorted bedforms was mapped in 2010 using biological, sedimentological and acoustic data. This approach reveals the first interdisciplinary analysis of macrofauna communities in sorted bedforms in the German Bight. The study area covered 4 km², and was located ca. 3.5 km west of island of Sylt. Sorted bedforms formed as sinuous depressions with an east west orientation. Inside these depressions coarse sand covers the seafloor, while outside predominantly fine to medium sand was found. Based on the hydroacoustic data, two seafloor classes were identified. Acoustic class 1 was linked to coarse sand (type A) found inside these sorted bedforms, whereas acoustic class 2 was related to mainly fine to medium sands (type B). The two acoustic classes and sediment types corresponded with the macrofauna communities 1 and 2. The Aoinides paucibranchiata-Goniadella bobretzkii community on coarse sand and the Spiophanes bombyx - Magelona johnstonii community on fine sand. A transitional community 3 (Scoloplos armiger - Ophelia community), with species found in communities 1 and 2, could not be detected by hydroacoustic methods. This study showed the limits of the used acoustic methods, which were unable to detect insignificant differences in the fauna composition of sandy areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total sediment oxygen consumption rates (TSOC or Jtot), measured during sediment-water incubations, and sediment oxygen microdistributions were studied at 16 stations in the Arctic Ocean (Svalbard area). The oxygen consumption rates ranged between 1.85 and 11.2 mmol m**-2 d**-1, and oxygen penetrated from 5.0 to >59 mm into the investigated sediments. Measured TSOC exceeded the calculated diffusive oxygen fluxes (Jdiff) by 1.1-4.8 times. Diffusive fluxes across the sediment-water interface were calculated using the whole measured microprofiles, rather than the linear oxygen gradient in the top sediment layer. The lack of a significant correlation between found abundances of bioirrigating meiofauna and high Jtot/Jdiff ratios as well as minor discrepancies in measured TSOC between replicate sediment cores, suggest molecular diffusion, not bioirrigation, to be the most important transport mechanism for oxygen across the sediment-water interface and within these sediments. The high ratios of Jtot/Jdiff obtained for some stations were therefore suggested to be caused by topographic factors, i.e. underestimation of the actual sediment surface area when one-dimensional diffusive fluxes were calculated, or sampling artifacts during core recovery from great water depths. Measured TSOC correlated to water depth raised to the -0.4 to -0.5 power (TSOC = water depth**-0.4 to -0.5) for all investigated stations, but they could be divided into two groups representing different geographical areas with different sediment oxygen consumption characteristics. The differences in TSOC between the two areas were suggested to reflect hydrographic factors (such as ice coverage and import/production of reactive particulate organic material) related to the dominating water mass (Atlantic or polar) in each of the two areas. The good correlation between TSOC and water depth**-0.4 to -0.5 rules out any of the stations investigated to be topographic depressions with pronounced enhanced sediment oxygen consumption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set provides a high-resolution digital elevation model (DEM) of a thermokarst depression (~7 km²) on ice-complex deposits in the Arctic Lena Delta, Siberia. The DEM based on a geodetic field survey and was used for quantitative land surface analyses and detailed description of the thermokarst depression morphology. Detailed morphometrical analyses, volume calculations, and solar radiation modeling were performed and statistically analyzed by Ulrich et al. (2010) to investigate the asymmetrical thermokarst depression development and directed lake migration previously proposed by Morgenstern et al. (2008). Furthermore, the high-resolution DEM in combination with satellite data allowed detailed analyses of spatial and temporal landscape changes due to thermokarst development (Günther, 2009).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5 km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved under¬standing of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1 km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two ice- flow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h-1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La escasez del agua en las regiones áridas y semiáridas se debe a la escasez de precipitaciones y la distribución desigual en toda la temporada, lo que hace de la agricultura de secano una empresa precaria. Un enfoque para mejorar y estabilizar el agua disponible para la producción de cultivos en estas regiones es el uso de tecnologías de captación de agua de lluvia in situ y su conservación. La adopción de los sistemas de conservación de la humedad del suelo in situ, tales como la labranza de conservación, es una de las estrategias para mejorar la gestión de la agricultura en zonas áridas y semiáridas. El objetivo general de esta tesis ha sido desarrollar una metodología de aplicación de labranza de depósito e investigar los efectos a corto plazo sobre las propiedades físicas del suelo de las diferentes prácticas de cultivo que incluyen labranza de depósito: (reservoir tillage, RT), la laboreo mínimo: (minimum tillage, MT), la no laboreo: (zero tillage, ZT) y laboreo convencional: (conventional tillage, CT) Así como, la retención de agua del suelo y el control de la erosión del suelo en las zonas áridas y semiáridas. Como una primera aproximación, se ha realizado una revisión profunda del estado de la técnica, después de la cual, se encontró que la labranza de depósito es un sistema eficaz de cosecha del agua de lluvia y conservación del suelo, pero que no ha sido evaluada científicamente tanto como otros sistemas de labranza. Los trabajos experimentales cubrieron tres condiciones diferentes: experimentos en laboratorio, experimentos de campo en una región árida, y experimentos de campo en una región semiárida. Para investigar y cuantificar el almacenamiento de agua a temperatura ambiente y la forma en que podría adaptarse para mejorar la infiltración del agua de lluvia recolectada y reducir la erosión del suelo, se ha desarrollado un simulador de lluvia a escala de laboratorio. Las características de las lluvias, entre ellas la intensidad de las precipitaciones, la uniformidad espacial y tamaño de la gota de lluvia, confirmaron que las condiciones naturales de precipitación son simuladas con suficiente precisión. El simulador fue controlado automáticamente mediante una válvula de solenoide y tres boquillas de presión que se usaron para rociar agua correspondiente a diferentes intensidades de lluvia. Con el fin de evaluar el método de RT bajo diferentes pendientes de superficie, se utilizaron diferentes dispositivos de pala de suelo para sacar un volumen idéntico para hacer depresiones. Estas depresiones se compararon con una superficie de suelo control sin depresión, y los resultados mostraron que la RT fue capaz de reducir la erosión del suelo y la escorrentía superficial y aumentar significativamente la infiltración. Luego, basándonos en estos resultados, y después de identificar la forma adecuada de las depresiones, se ha diseñado una herramienta combinada (sistema integrado de labranza de depósito (RT)) compuesto por un arado de una sola línea de chisel, una sola línea de grada en diente de pico, sembradora modificada, y rodillo de púas. El equipo fue construido y se utiliza para comparación con MT y CT en un ambiente árido en Egipto. El estudio se realizó para evaluar el impacto de diferentes prácticas de labranza y sus parámetros de funcionamiento a diferentes profundidades de labranza y con distintas velocidades de avance sobre las propiedades físicas del suelo, así como, la pérdida de suelo, régimen de humedad, la eficiencia de recolección de agua, y la productividad de trigo de invierno. Los resultados indicaron que la RT aumentó drásticamente la infiltración, produciendo una tasa que era 47.51% más alta que MT y 64.56% mayor que la CT. Además, los resultados mostraron que los valores más bajos de la escorrentía y pérdidas de suelos 4.91 mm y 0.65 t ha-1, respectivamente, se registraron en la RT, mientras que los valores más altos, 11.36 mm y 1.66 t ha-1, respectivamente, se produjeron en el marco del CT. Además, otros dos experimentos de campo se llevaron a cabo en ambiente semiárido en Madrid con la cebada y el maíz como los principales cultivos. También ha sido estudiado el potencial de la tecnología inalámbrica de sensores para monitorizar el potencial de agua del suelo. Para el experimento en el que se cultivaba la cebada en secano, se realizaron dos prácticas de labranza (RT y MT). Los resultados mostraron que el potencial del agua del suelo aumentó de forma constante y fue consistentemente mayor en MT. Además, con independencia de todo el período de observación, RT redujo el potencial hídrico del suelo en un 43.6, 5.7 y 82.3% respectivamente en comparación con el MT a profundidades de suelo (10, 20 y 30 cm, respectivamente). También se observaron diferencias claras en los componentes del rendimiento de los cultivos y de rendimiento entre los dos sistemas de labranza, el rendimiento de grano (hasta 14%) y la producción de biomasa (hasta 8.8%) se incrementaron en RT. En el experimento donde se cultivó el maíz en regadío, se realizaron cuatro prácticas de labranza (RT, MT, ZT y CT). Los resultados revelaron que ZT y RT tenían el potencial de agua y temperatura del suelo más bajas. En comparación con el tratamiento con CT, ZT y RT disminuyó el potencial hídrico del suelo en un 72 y 23%, respectivamente, a la profundidad del suelo de 40 cm, y provocó la disminución de la temperatura del suelo en 1.1 y un 0.8 0C respectivamente, en la profundidad del suelo de 5 cm y, por otro lado, el ZT tenía la densidad aparente del suelo y resistencia a la penetración más altas, la cual retrasó el crecimiento del maíz y disminuyó el rendimiento de grano que fue del 15.4% menor que el tratamiento con CT. RT aumenta el rendimiento de grano de maíz cerca de 12.8% en comparación con la ZT. Por otra parte, no hubo diferencias significativas entre (RT, MT y CT) sobre el rendimiento del maíz. En resumen, según los resultados de estos experimentos, se puede decir que mediante el uso de la labranza de depósito, consistente en realizar depresiones después de la siembra, las superficies internas de estas depresiones se consolidan de tal manera que el agua se mantiene para filtrarse en el suelo y por lo tanto dan tiempo para aportar humedad a la zona de enraizamiento de las plantas durante un período prolongado de tiempo. La labranza del depósito podría ser utilizada como un método alternativo en regiones áridas y semiáridas dado que retiene la humedad in situ, a través de estructuras que reducen la escorrentía y por lo tanto puede resultar en la mejora de rendimiento de los cultivos. ABSTRACT Water shortage in arid and semi-arid regions stems from low rainfall and uneven distribution throughout the season, which makes rainfed agriculture a precarious enterprise. One approach to enhance and stabilize the water available for crop production in these regions is to use in-situ rainwater harvesting and conservation technologies. Adoption of in-situ soil moisture conservation systems, such as conservation tillage, is one of the strategies for upgrading agriculture management in arid and semi-arid environments. The general aim of this thesis is to develop a methodology to apply reservoir tillage to investigate the short-term effects of different tillage practices including reservoir tillage (RT), minimum tillage (MT), zero tillage (ZT), and conventional tillage (CT) on soil physical properties, as well as, soil water retention, and soil erosion control in arid and semi-arid areas. As a first approach, a review of the state of the art has been done. We found that reservoir tillage is an effective system of harvesting rainwater and conserving soil, but it has not been scientifically evaluated like other tillage systems. Experimental works covered three different conditions: laboratory experiments, field experiments in an arid region, and field experiments in a semi-arid region. To investigate and quantify water storage from RT and how it could be adapted to improve infiltration of harvested rainwater and reduce soil erosion, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to different rainfall intensities. In order to assess the RT method under different surface slopes, different soil scooping devices with identical volume were used to create depressions. The performance of the soil with these depressions was compared to a control soil surface (with no depression). Results show that RT was able to reduce soil erosion and surface runoff and significantly increase infiltration. Then, based on these results and after selecting the proper shape of depressions, a combination implement integrated reservoir tillage system (integrated RT) comprised of a single-row chisel plow, single-row spike tooth harrow, modified seeder, and spiked roller was developed and used to compared to MT and CT in an arid environment in Egypt. The field experiments were conducted to evaluate the impact of different tillage practices and their operating parameters at different tillage depths and different forward speeds on the soil physical properties, as well as on runoff, soil losses, moisture regime, water harvesting efficiency, and winter wheat productivity. Results indicated that the integrated RT drastically increased infiltration, producing a rate that was 47.51% higher than MT and 64.56% higher than CT. In addition, results showed that the lowest values of runoff and soil losses, 4.91 mm and 0.65 t ha-1 respectively, were recorded under the integrated RT, while the highest values, 11.36 mm and 1.66 t ha -1 respectively, occurred under the CT. In addition, two field experiments were carried out in semi-arid environment in Madrid with barley and maize as the main crops. For the rainfed barley experiment, two tillage practices (RT, and MT) were performed. Results showed that soil water potential increased quite steadily and were consistently greater in MT and, irrespective of the entire observation period, RT decreased soil water potential by 43.6, 5.7, and 82.3% compared to MT at soil depths (10, 20, and 30 cm, respectively). In addition, clear differences in crop yield and yield components were observed between the two tillage systems, grain yield (up to 14%) and biomass yield (up to 8.8%) were increased by RT. For the irrigated maize experiment, four tillage practices (RT, MT, ZT, and CT) were performed. Results showed that ZT and RT had the lowest soil water potential and soil temperature. Compared to CT treatment, ZT and RT decreased soil water potential by 72 and 23% respectively, at soil depth of 40 cm, and decreased soil temperature by 1.1 and 0.8 0C respectively, at soil depth of 5 cm. Also, ZT had the highest soil bulk density and penetration resistance, which delayed the maize growth and decreased the grain yield that was 15.4% lower than CT treatment. RT increased maize grain yield about 12.8% compared to ZT. On the other hand, no significant differences among (RT, MT, and CT) on maize yield were found. In summary, according to the results from these experiments using reservoir tillage to make depressions after seeding, these depression’s internal surfaces are consolidated in such a way that the water is held to percolate into the soil and thus allowing time to offer moisture to the plant rooting zone over an extended period of time. Reservoir tillage could be used as an alternative method in arid and semi-arid regions and it retains moisture in-situ, through structures that reduce runoff and thus can result in improved crop yields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a gravimetric study (based on 382 gravimetric stations in an area about 32 km2) of a nearly flat basin: the Low Andarax valley. This alluvial basin, close to its river mouth, is located in the extreme south of the province of Almería and coincides with one of the existing depressions in the Betic Cordillera. The paper presents new methodological work to adapt a published inversion approach (GROWTH method) to the case of an alluvial valley (sedimentary stratification, with density increase downward). The adjusted 3D density model reveals several features in the topography of the discontinuity layers between the calcareous basement (2,700 kg/m3) and two sedimentary layers (2,400 and 2,250 kg/m3). We interpret several low density alignments as corresponding to SE faults striking about N140?145°E. Some detected basement elevations (such as the one, previously known by boreholes, in Viator village) are apparently connected with the fault pattern. The outcomes of this work are: (1) new gravimetric data, (2) new methodological options, and (3) the resulting structural conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil erosion is a serious environmental threat in the Mediterranean region due to torrential rainfalls, and it contributes to the degradation of agricultural land. Techniques such as rainwater harvesting may improve soil water storage and increase agricultural productivity, which could result in more effective land usage. Reservoir tillage is an effective system of harvesting rainwater, but it has not been scientifically evaluated like other tillage systems. Its suitability for the conditions in Spain has not been determined. To investigate and quantify water storage from reservoir tillage and how it could be adapted to improve infiltration of harvested rainwater, a laboratory-scale rainfall simulator was developed. Rainfall characteristics, including rainfall intensity, spatial uniformity and raindrop size, confirm that natural rainfall conditions are simulated with sufficient accuracy. The simulator was auto-controlled by a solenoid valve and three pressure nozzles were used to spray water corresponding to five rainfall intensities ranging from 36 to 112 mm h− 1 for 3 to 101-year return period with uniformity coefficients between 83 and 94%. In order to assess the reservoir tillage method under surface slopes of 0, 5, and 10%, three soil scooping devices with identical volume were used to make depressions in the following forms: a) truncated square pyramid, b) triangular prism, and c) truncated cone. These depressions were compared to a control soil surface with no depression. For the loam soil used in this study, results show that reservoir tillage was able to reduce soil erosion and surface runoff and significantly increase infiltration. There was significant difference between the depressions and the control. Compared to the control, depression (a) reduced surface runoff by about 61% and the sediment yield concentration by about 79%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional structures of human parvovirus B19 VP2 capsids, alone and complexed with its cellular receptor, globoside, have been determined to 26 resolution. The B19 capsid structure, reconstructed from cryo-electron micrographs of vitrified specimens, has depressions on the icosahedral 2-fold and 3-fold axes, as well as a canyon-like region around the 5-fold axes. Similar results had previously been found in an 8 angstrom resolution map derived from x-ray diffraction data. Other parvoviral structures have a cylindrical channel along the 5-fold icosahedral axes, whereas density covers the 5-fold axes in B19. The glycolipid receptor molecules bind into the depressions on the 3-fold axes of the B19:globoside complex. A model of the tetrasaccharide component of globoside, organized as a trimeric fiber, fits well into the difference density representing the globoside receptor. Escape mutations to neutralizing antibodies map onto th capsid surface at regions immediately surrounding the globoside attachment sites. The proximity of the antigenic epitopes to the receptor site suggests that neutralization of virus infectivity is caused by preventing attachment of viruses to cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory of the mechanical origins of receptor-mediated endocytosis shows that a spontaneous membrane complex formation can provide the stimulus for a local membrane motion toward the cytosol. This motion is identified with a nucleation stage of receptor-mediated endocytosis. When membrane complexes cluster, membrane deformation is predicted to be most rapid. The rate of growth of membrane depressions depends upon the relative rates of approach of aqueous cytosolic and extracellular fluids toward the cell membrane. With cytosolic and extracellular media characterized by apparent viscosities, the rate of growth of membrane depressions is predicted to increase as the extracellular viscosity nears the apparent viscosity of the cytosol and then to decrease when the extracellular viscosity exceeds that of the cytosol. To determine whether these trends would be apparent in the overall endocytosis rate constant, an experimental study of transferrin-mediated endocytosis in two different cell lines was conducted. The experimental results reveal the same dependence of internalization rate on extracellular viscosity as predicted by the theory. These and other comparisons with experimental data suggest that the nucleation stage of receptor-mediated endocytosis is important in the overall endocytosis process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landscape units based on the visual features of the relief have been distinguished in the “Barranco del Río Dulce Natural Park” (Spain). These units are geomorphic entities composed of several elementary landforms and characterized by a visual internal homogeneity, and contrast with other landscape units in their location, height, profile and gradients, reflecting their different evolution and genesis. Landscape units bear some subjectivity in their definition and in their boundary location due to the overlapping of geomorphic processes along time. Visual, compositional and conventional boundaries have been used for mapping. Neogene landscape evolution mainly occurred through thrust faulting at the Iberian Ranges-Tagus Basin boundary, driving tectonic uplift and erosion of the Ranges and correlative sedimentation in the Basin. Erosion of the Ranges occurred with the development of planation surfaces, leaving minor isolated reliefs in the upland plains landscape. The lowering of the base level, caused by the endorheic–exorheic transition of the Tagus Basin in the Pliocene, originates fluvial entrenchment and water table lowering with development of the first fluvial valleys and the capture of karstic depressions. Two subsequent phases of renewed fluvial incision (Pleistocene) lead to abandonment of some Pliocene valleys, fluvial captures, and development and reincision of tributaries

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado em Geologia Aplicada, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016