934 resultados para Deposit banking
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
To facilitate equity and maximize the use of available human resources, all policies, practices, and procedures of the Division of Banking are designed to ensure that recruitment, hiring selection, promotions, transfers, compensation, benefits, and training will be administered in a fair and nondiscriminatory manner.
Resumo:
This report outlines the strategic plan for Iowa Division of banking including, goals and mission.
Resumo:
The incorporation of space allows the establishment of a more precise relationship between a contaminating input, a contaminating byproduct and emissions that reach the final receptor. However, the presence of asymmetric information impedes the implementation of the first-best policy. As a solution to this problem a site specific deposit refund system for the contaminating input and the contaminating byproduct are proposed. Moreover, the utilization of a successive optimization technique first over space and second over time enables definition of the optimal intertemporal site specific deposit refund system
Resumo:
The breccia-hosted epithermal Au-Ag deposit of Rosia Montana is located 7 kin northeast of Abrud, in the northern part of the South Apuseni Mountains, Romania. Estimated total reserves of 214.91 million metric toils (Mt) of ore at 1.46 g/t An and 6.9 g/t Ag (10.1 Moz of An and 47.6 Moz of Ag) make Rosia Montana one of the largest gold deposits in Europe. At this location, Miocene calc-alkaline magmatic and hydrothermal activity was associated with local extensional tectonics within a strike-slip regime related to the indentation of the Adriatic microplate into the European plate during the Carpathian orogenesis. The host rocks of the magmatic complex consist of pre-Mesozoic metamorphosed continental crust covered by Cretaceous turbiditic sediment (flysch). Magmatic activity at Rosia Montana and its surroundings occurred in several pulses and lasted about 7 m.y, Rosia Montana is a breccia-hosted epithermal system related to strong phreatomagmatic activity due to the shallow emplacement of the Montana dacite. The Montana dacite intruded Miocene volcaniclastic material (volcaniclastic breccias) and crops out at Cetate and Carnic Hills. Current mining is focused primarily on the Cetate open pit, which was mapped in detail, leading to the recognition of three distinct breccia bodies: the dacite breccia with a dominantly hydrothermal matrix, the gray polymict breccia with a greater proportion of sand-sized matrix support, and the black polymict breccia, which reached to the surface, contains carbonized tree trunks and has a dominantly barren elastic matrix. The hydrothermal alteration is pervasive. Adularia alteration with a phyllic overprint is ubiquitous; silicification and argillic alteration occur locally. Mineralization consists of quartz, adularia, carbonates (commonly Mn-rich), pyrite, Fe-poor sphalerite, galena, chalcopyrite, tetrahedrite, and native gold and occurs as disseminations, as well as in veins and filling vugs within the Montana dacite and the different breccias. The age of mineralization (12.85 +/- 0.07 Ma) was determined by Ar-40- Ar-39 dating on hydrothermal adularia crystals from vugs in the dacite breccia in the Cetate open pit. Microthermometric measurements of fluid inclusions in quartz phenocrysts from the Montana dacite revealed two fluid types that are absent from the hydrothermal breccia and must have been trapped at depth prior to dacite dome emplacement: brine inclusions (32-55 -wt % NaCl equiv, homogenizing at T-h > 460 degrees C) and intermediate density fluids (4.9-15.6 wt % NaCl equiv, T, between 345 degrees-430 degrees C). Secondary aqueous fluid inclusion assemblages in the phenocrysts have salinities of 0.2 to 2.2 wt percent NaCl equiv and T-h of 200 degrees to 280 degrees C. Fluid inclusion assemblages in hydrothermal quartz from breccias and veins have salinities of 0.2 to 3.4 wt percent NaCl equiv and T-h, from 200 degrees to 270 degrees C. The oxygen isotope composition of several zones of an ore-related epithermal quartz crystal indicate a very constant delta O-18 of 4.5 to 5.0 per mil for the mineralizing fluid, despite significant salinity and temperature variation over time. Following microthermometry, selected fluid inclusion assemblages were analyzed by laser ablation-inductively coupled-plasma mass spectrometry (LA-ICMS). Despite systematic differences in salinity between phenocryst-hosted fluids trapped at depth and fluids from quartz in the epithermal breccias, all fluids have overlapping major and trace cation ratios, including identical Na/K/Rb/Sr/Cs/Ba. Consistent with the constant near-magmatic oxygen isotope composition of the hydrothermal fluids, these data strongly indicate a common magmatic component of these chemically conservative solutes in all fluids. Cu, Pb, Zn, and Mn show variations in concentration relative to the relatively non-reactive alkalis, reflecting the precipitation of sulfide minerals together with An in the epithermal breccia, and possibly of Cu in an inferred subjacent porphyry environment. The magmatic-hydrothermal processes responsible for epithermal Au-Ag mineralization at Rosia Montana are, however, not directly related to the formation of the spatially associated porphyry Cu-Au deposit of Rosia Poieni, which occurred lout 3 m.y. later.
Resumo:
Human tissue biobanking encompasses a wide range of activities and study designs and is critical for application of a wide range of new technologies (-"omics") to the discovery of molecular patterns of disease and for implementation of novel biomarkers into clinical trials. Pathology is the cornerstone of hospital-based tissue biobanking. Pathologists not only provide essential information identifying the specimen but also make decisions on what should be biobanked, making sure that the timing of all operations is consistent with both the requirements of clinical diagnosis and the optimal preservation of biological products. This document summarizes the conclusions of a Pathology Expert Group Meeting within the European Biological and Biomolecular Research Infrastructure (BBMRI) Program. These recommendations are aimed at providing guidance for pathologists as well as for institutions hosting biobanks on how to better integrate and support pathological activities within the framework of biobanks that fulfill international standards.
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.