913 resultados para Depósitos de lodos


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La Cuenca Lancones se encuentra ubicada en la región noroccidental del Perú, en el Departamento de Piura y en el borde oriental de la Franja Costanera, su límite oeste lo constituye el Macizo de Amotapes y hacia el este la región pre-cordillerana de la Cordillera Occidental de los Andes. Esta cuenca se extiende hacia Ecuador, en donde se la ha denominado Cuenca Celica. (Ver Fig. 1) La Cuenca Lancones de acuerdo a las características geológicas, mineralógicas y litológicas debe ser considerada como el principal objetivo en la prospección por yacimientos vulcanogénicos de sulfuros masivos (VMS) en el Perú (Ríos, 2004). Actualmente el yacimiento de Tambo Grande, situado dentro de la Cuenca Lancones, cuenta con tres depósitos de sulfuros masivos (TG1, TG3 y B5), considerados como depósitos de clase mundial (Tegart, 2000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El lodo de depuradora es el residuo líquido o semilíquido procedente de las Estaciones Depuradoras de Aguas Residuales (EDARs) del que puede obtenerse una energía renovable empleando la tecnología de la gasificación. Esta tecnología consiste en la oxidación parcial del sustrato carbonoso del lodo a altas temperaturas bajo condiciones subestequiométricas de aire, oxígeno u otros agentes gasificantes. Los productos obtenidos mediante gasificación son: un gas de síntesis (SYNGAS, con composición variable de H2, CO) un residuo carbonizado (char) y una fracción líquida de compuestos orgánicos de distinto peso molecular denominados alquitranes. El gas de síntesis tiene aplicaciones como son la generación de energía eléctrica/térmica o la síntesis de compuestos químicos. Sin embargo, la presencia de alquitranes imposibilita su uso en buena parte de las aplicaciones. El trabajo realizado que aquí se presenta estudia la posibilidad de tratar los lodos de depuradora mediante gasificación. Para ello, se han realizado las siguientes tareas: - Caracterización del lodo incluyendo la determinación de su humedad, materia orgánica, análisis elemental (C, N, H, S) y contenido de metales pesados (Cd, Cu, Ni, Pb, Zn, Hg y Cr). - Estudios de termogravimetría (TGA) del lodo para conocer su comportamiento térmico y la temperatura a la que se producen las principales reacciones en la gasificación. - Gasificación en un equipo de lecho fluido burbujeante y alimentación en continuo a escala de laboratorio. Con dicho gasificador se ha experimentado a distintas temperaturas y cargas para conocer las condiciones de proceso más favorables para aumentar la producción y el poder calorífico del SYNGAS obteniendo, a la vez, una baja producción en alquitranes. Para ello se ha analizado la composición de los gases obtenidos, la producción de alquitranes, la conversión del carbón y la eficiencia en la gasificación. Los alquitranes fueron analizados mediante cromatografía de gases y espectrometría de masas, para conocer y cuantificar sus diferentes componentes. - Determinación de la capacidad adsorbente de carbones activos producidos mediante gasificación, utilizando azul de metileno como adsorbato. Las conclusiones obtenidas permiten considerar la viabilidad técnica de la gasificación de lodos como fuente de energía renovable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La planta química Pridneprovsky fue una de las empresas mas grandes de procesamiento de uranio de la antigua URSS. Los depósitos de Zapadnoe contienen la mayoría de estos residuos. Proponemos un marco teórico basado en el Análisis de Decisión Multicriterio y la Lógica Borrosa para analizar diferentes alternativas de remediación de los residuos Zapadnoe, en las que objetivos económicos, sociales y ambientales potencialmente conflictivos entre sí son simultáneamente tenidos en cuenta. Se ha construido una jerarquía de objetivos, que incluye todos los aspectos relevantes del problema, en la que se observa claramente los objetivos y atributos que son necesarios conseguir si se quieren alcanzar objetivos de un nivel superior. Se han usado conjuntos borrosos en lugar de valores exactos, para evaluar las alternativas de remediación en los diferentes criterios y cuanticar las preferencias del decisor. Para ello, se propone que las alternativas de remediación deben ser evaluadas por medio de una función de utilidad de multiatributo aditiva. Este método producirá una utilidad esperada para cada alternativa representada por medio de un numero borroso trapezoidal. Finalmente se usará un algoritmo de ordenamiento de números borrosos para elegir la mejor alternativa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente proyecto pretende realizar un estudio metalogenético de los depósitos minerales del Cinturón Pirítico Ibérico. En una primera instancia se realiza un análisis de los rasgos geológicos característicos de la zona. Se procede a una síntesis geológica, medioambiental, hidrogeológica, mineralúrgica y metalúrgica para poder establecer una posterior conexión óptima a la hora de realizar la explotación. A partir de esas características más generales, se realiza un estudio mineralógico de las principales minas de la zona de estudio, donde se indican los principales minerales a explotar, su disponibilidad, los metales y elementos a los que se dan lugar… ABSTRACT This projects aims to make a metallogenic study of the mineral deposits of the Iberian Pyrite Belt. In the first instance an analysis of the characteristic geological features of the area is made. We proceed to a geological, environmental, hydrogeological, Mineralogical and Metallurgical order to establish a good connection back to the time of making the exploitation synthesis. From these general features, a mineralogical study of the major mines in the area of study, where the primary minerals listed explode, availability, metals and elements to which they give rise is done...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La gasificación de lodos de depuración es una alternativa atractiva para generar gases combustibles como H2 y CO. A su vez, estos gases pueden emplearse como materias primas para la obtención de productos químicos orgánicos y combustibles líquidos. Sin embargo, la gasificación no está exenta de problemas como el ligado a la generación de residuos sólidos y alquitrán. El alquitrán en el gas puede ser un inconveniente para emplear el gas como combustible por las obstrucciones y corrosión en los equipos. Dado que las condiciones de gasificación influyen en la producción de alquitrán, este trabajo de investigación se ha centrado en analizar la influencia de parámetros como la temperatura, la carga de alimentación, el tamaño de partícula, el agente gasificante y la utilización de catalizadores en la gasificación en lecho fluidizado de lodos de depuración. Adicionalmente a la medición del efecto de los anteriores parámetros en la producción y composición del alquitrán, también se ha cuantificado su influencia en la producción y composición del gas y en producción del residuo carbonoso. Los resultados muestran que el incremento de la carga de alimentación (kg/h.m2) provoca el descenso de la producción de gas combustible y el incremento del residuo carbonoso y del alquitrán debido a la reducción del tiempo de residencia del gas lo que supone un menor tiempo disponible para las reacciones gas-gas y gas-sólido ligadas a la conversión del alquitrán y del residuo carbonoso en gases combustibles. También se ha comprobado que, el aumento del tamaño de partícula, al incrementar el tiempo de calentamiento de ésta, tiene un efecto similar en los productos de la gasificación que el derivado del incremento en la carga de alimentación. La utilización de una temperatura de gasificación alta (850 ºC), el empleo de aire-vapor como agente gasificante y/o catalizadores primarios como la dolomía consiguen reducir la producción de alquitrán. ABSTRACT Gasification of sewage sludge is an attractive alternative for generating of fuel gases such as H2 and CO. These gases, in turn, can be used as raw materials for the production of organic chemicals and liquid fuel. However, gasification is not without problems as the linked ones to production of char and tar. The tar in the gas can be an inconvenience for to use it as fuel by the problems of blockage and corrosion in the equipments. Since the gasification conditions affect the production of tar, this research has focused on analysing the influence of parameters such as temperature, throughput, the particle size, the gasifying agent and the use of catalysts in the fluidized bed gasification of sewage sludge. In addition to measuring the effect of the above parameters on the production and composition of the tar, it has also been quantified their influence on the yield and composition of the gas and char production. The results show that higher throughput (kg/h.m2) leads to a reduction of fuel gas production and an increase in the production of char and tar, this owes to a lower of gas residence time or what is the same thing less time available for gas-solid and gas-gas reactions attached to the conversion of tar and char to fuel gases. There has also been proven that the rising in particle size, by the increasing heating time of it, has a similar effect in the products of gasification that the results by the rise in the throughput. The applications a high gasification temperature (850 ° C), the use of air-steam as gasifying agent and/or dolomite as primary catalysts are able to reduce the production of tar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este estudio evaluamos la calidad de los lodos de una depuradora urbana y su aplicación en el cultivo de sandía (Citrullus lanatus) y tomate (Solanum lycopersicum).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este trabajo de investigación fue evaluar el efecto de la aplicación de lodos residuales procedentes de una planta de tratamiento de aguas residuales acondicionados como biosólido para el abonado de tres cultivos agrícolas. Esto se realizó a través del estudio de las variables de producción (desarrollo vegetal de cada cultivo) y de la comparación de las características de los suelos utilizados antes y después de los ensayos experimentales. A través de la investigación se confirmó la mejora en la calidad del suelo y mejor rendimiento de cultivo debido a los biosólidos procedentes de tratamiento de aguas residuales. Este trabajo de investigación de tipo descriptivo y experimental, utilizó lodos optimizados que fueron aplicados a tres cultivos agrícolas de ciclo corto. Fueron evaluados dos cultivos (sandía y tomate) bajo riego y un cultivo (arroz) en secano. En la primera fase del trabajo se realizó la caracterización de los lodos, para ellos se realizaron pruebas físico químicas y microbiológicas. Fue utilizado el método de determinación de metales por espectrometría de emisión atómica de plasma acoplado inductivamente, (ICP-AES) para conocer las concentraciones de metales. La caracterización microbiológica para coliformes totales y fecales se realizó utilizando la técnica del Número más probable (NMP), y para la identificación de organismos patógenos se utilizó el método microbiológico propuesto por Kornacki & Johnson (2001), que se fundamenta en dos procesos: pruebas presuntivas y prueba confirmativa. Tanto los resultados para la determinación de metales y elementos potencialmente tóxicos; como las pruebas para la determinación de microorganismos potencialmente peligrosos, estuvieron por debajo de los límites considerados peligrosos establecidos por la normativa vigente en Panama (Reglamento Técnico COPANIT 47-2000). Una vez establecido la caracterización de los lodos, se evalúo el potencial de nutrientes (macro y micro) presentes en los biosólidos para su potencial de uso como abono en cultivos agrícolas. El secado de lodos fue realizado a través de una era de secado, donde los lodos fueron deshidratados hasta alcanzar una textura pastosa. “La pasta de lodo” fue transportada al área de los ensayos de campo para continuar el proceso de secado y molida. Tres ensayos experimentales fueron diseñados al azar con cinco tratamientos y cuatro repeticiones para cada uno de los tres cultivos: sandía, tomate, arroz, en parcelas de 10m2 (sandía y tomate) y 20 m2 (arroz) para cada tratamiento. Tres diferentes dosis de biosólidos fueron evaluadas y comparadas con un tratamiento de fertilizante comercial y un tratamiento control. La dosis de fertilizante comercial utilizada en cada cultivo fue la recomendada por el Instituto de Investigación Agropecuaria de Panamá. Los ensayos consideraron la caracterización inicial del suelo, la preparación del suelo, semilla, y arreglo topográfico de los cultivos siguiendo las recomendaciones agronómicas de manejo de cultivo establecida por el Instituto de Investigación Agropecuaria. Para los ensayos de sandía y tomate se instaló el sistema de riego por goteo. Se determinaron los ácidos húmicos presentes en los cultivos, y se estudiaron las variables de desarrollo de cada cultivo (fructificación, cosecha, peso de la cosecha, dimensiones de tamaño y color de las frutas, rendimiento, y la relación costo – rendimiento). También se estudiaron las variaciones de los macro y micro nutrientes y las variaciones de pH, textura de suelo y MO disponible al inicio y al final de cada uno de los ensayos de campo. Todas las variables y covariables fueron analizadas utilizando el programa estadístico INFOSAT (software para análisis estadístico de aplicación general) mediante el análisis de varianza, el método de comparaciones múltiples propuesto por Fisher (LSD Fisher) para comparar las medias de los cultivares y el coeficiente de correlación de Pearson que nos permite analizar si existe una asociación lineal entre dos variables. En la evaluación de los aportes del biosólido a los cultivos se observó que los macronutrientes N y P se encontraban de los límites requeridos en cada uno de los cultivos, pero que los niveles de K estuvieron por debajo de los requerimientos de los cultivos. A nivel de la fertilización tradicional con fertilizante químico se observó que la dosis recomendada para cada uno de los cultivos del estudio estaba sobreestimada en los tres principales macronutrientes: Nitrógeno, Fosforo y Potasio. Contenían concentraciones superiores de N, P y K a las requeridas teóricamente por el cultivo. El nutriente que se aporta en exceso es el Fósforo. Encontramos que para el cultivo de sandía era 18 veces mayor a lo requerido por el cultivo, en tomate fue 12 veces mayor y en el cultivo de arroz, 34 veces mayor. El fertilizante comercial tuvo una influencia en el peso final y rendimiento final en cada uno de los cultivos del estudio. A diferencia, los biosólidos tuvieron una influencia directa en el desarrollo de los cultivos (germinación, coloración, tamaño, longitud, diámetro, floración y resistencia a enfermedades). Para el caso de la sandía la dosis de biosólido más cercana al óptimo para el cultivo es la mayor dosis aplicada en este ensayo (97.2 gramos de biosólido por planta). En el caso de tomate, el fertilizante comercial obtuvo los mejores valores, pero las diferencias son mínimas con relación al tratamiento T1, de menor dosis de biosólido (16.2 gramos de biosólido por planta). Los resultados generales del ensayo de tomate estuvieron por debajo del rendimiento esperado para el cultivo. Los tratamientos de aplicación de biosólidos aportaron al desarrollo del cultivo en las variables tamaño, color y resistencia a las enfermedades dentro del cultivo de tomate. Al igual que el tomate, en el caso del arroz, el tratamiento comercial obtuvo los mejores resultados. Los resultados finales de peso y rendimiento del cultivo indican que el tratamiento (T2), menor dosis de biosólido (32.4 gramos por parcela), no tuvo diferencias significativas con los resultados obtenidos en las parcelas con aplicación de fertilizante comercial (T1). El tratamiento T4 (mayor dosis de biosólido) obtuvo los mejores valores para las variables germinación, ahijamiento y espigamiento del cultivo, pero al momento de la maduración obtuvo los menores resultados. Los biosólidos aportan nutrientes a los cultivos y al final del ensayo se observó que permanecen disponibles en el suelo, aportando a la mejora del suelo final. En los tres ensayos, se pudo comprobar que los aportes de los biosólidos en el desarrollo vegetativo de los cultivos. También se encontró en todos los ensayos que no hubo diferencias significativas (p > 0.05) entre los tratamientos de biosólidos y fertilizante comercial. Para obtener mejores resultados en estos tres ensayos se requeriría que a la composición de biosólidos (utilizada en este ensayo) se le adicione Potasio, Calcio y Magnesio en las cantidades requeridas por cada uno de los cultivos. ABSTRACT The objective of this investigation was to evaluate the effect of residual sewage sludge obtained from the residual water of a treatment plant conditioned as Biosolid used on three reliable agricultural crops. The effect of the added sewage sludge was evaluated through the measurement of production variables such as crop plant development and the comparison of the soil characteristics used before and after the experimental tests. This investigation confirmed that biosolids from wastewater treatment can contribute to the growth of these crops. In this experimental approach, optimized sludge was applied to three short-cycle crops including two low-risk crops (watermelon and tomato) and one high-risk crop (rice) all grown on dry land. In the first phase of work, the characteristics of the sludge were assessed using chemical, physical and microbiological tests. The concentrations of metals were determined by atomic emission spectrometry inductively coupled plasma, (ICP-AES). Microbiological characterization was performed measuring total coliform and fecal count using the most probable number technique (NMP) and microbiological pathogens were identified using Kornacki & Johnson (2001) method based on two processes: presumptive and confirmatory tests. Both the results for the determination of metals and potentially toxic elements, as testing for the determination of potentially dangerous microorganisms were below the limits established by the applicable standard in Panama (Technical Regulate COPANIT 47-2000). After the metal and bacterial characterization of the sludge, the presence of macro or micronutrients in biosolids was measured to evaluate its potential for use as fertilizer in the growth of agricultural crops. The sludge was dehydrated via a drying process into a muddy slurry. The pulp slurry was transported to the field trial area to continue the process of drying and grinding. Three randomized experimental trials were designed to test with five treatment regimens and four replications for each of the crops: watermelon, tomato, rice. The five treatment regimens evaluated were three different doses of bio solid with commercial fertilizer treatment control and no fertilizer treatment control. Treatment areas for the watermelon and tomato were 10m2 plots land and for rice was 20m2. The amount of commercial fertilizer used to treat each crop was based on the amount recommended by Agricultural Research Institute of Panama. The experimental trials considered initial characterization of soil, soil preparation, seed, and crop topographical arrangement following agronomic crop management recommendations. For the tests evaluating the growth of watermelons and tomatoes and drip irrigation system was installed. The amount of humic acids present in the culture were determined and developmental variable of each crop were studied (fruiting crop harvest weight, size dimensions and color of the fruit, performance and cost effectiveness). Changes in macro and micronutrients and changes in pH, soil texture and OM available were measured at the beginning and end of each field trial. All variables and covariates were analyzed using INFOSAT statistical program (software for statistical analysis of general application) by analysis of variance, multiple comparisons method as proposed by Fisher (LSD Fisher) to compare the means of cultivars and the Pearson ratio that allows us to analyze if there is a linear association between two variables. In evaluating the contribution of biosolids to agricultural crops, the study determined that the macronutrients N & P were within the requirements of crops, but K levels were below the requirements of crops. In terms of traditional chemical fertilizer fertilization, we observed that the recommended dose for each study crop was overestimated for the three major nutrients: nitrogen, phosphorus and potassium. Higher concentrations containing N, P and K to the theoretically required by the crop. The recommended dose of commercial fertilizer for crops study contained greater amounts of phosphorus, crops that need. The level of phosphorous was found to be18 times greater than was required for the cultivation of watermelon; 12 times higher than required for tomato, and 34 times higher than required for rice cultivation. Phosphorus inputs of commercial fertilizer were a primary influence on the weight and performance of each crop. Unlike biosolids had a direct influence on crop development (germination, color, size, length, diameter, flowering and disease resistance). In the case of growth of watermelons, the Biosolid dose closest to the optimum for cultivation was applied the highest dose in this assay (97.2 grams of bio solids per plant). In the case of tomatoes, commercial fertilizer had the best values but the differences were minimal when compared to treatment T1, the lower dose of sewage sludge (Biosolid 16.2 grams per plant). The overall results for the tomato crop yield of the trial were lower than expected. Additionally, the application of biosolids treatment contributed to the development of fruit of variable size, color and disease resistance in the tomato crops. Similar to the tomato crop, commercial fertilizer treatment provided the best results for the rice crop. The final results of weight and crop yield for rice indicated that treatment with T2 amount of biosolids (34.2 grams per plot) was not significantly different from the result obtained in the application plot given commercial fertilizer (T1). The T4 (higher dose of bio solid) treatment had the best values for the germination, tillering and bolting variables of the rice crop but for fruit ripening yielded lower results. In all three trials, biosolids demonstrated the ability to contribute in the vegetative growth of crops. It was also found in all test no significant differences (p>0.05) between treatment of bio solid and commercial fertilizer. Biosolids provided nutrients to the crops and even at the end of the trial remained available in the ground soil, contributing to the improvement of the final ground. The best results from these three trials is that the use of bio solids such as those used in this assay would require the addition of potassium, calcium and magnesium in quantities required for each crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El biochar es un material rico en carbono que se obtiene tras la pirólisis de la biomasa. Este material ha despertado en los últimos años un gran interés en la comunidad científica principalmente por su capacidad para mejorar la productividad de los suelos, influenciando las propiedades fisicoquímicas de los mismos y como medio de fijación de carbono, reduciendo, por tanto, las emisiones de CO2 a la atmósfera. Sin embargo, lo cierto es que hasta la fecha, no existen conclusiones claras o avances definitivos que permitan crear una estandarización para la comercialización del biochar, debido a la variabilidad de sus propiedades (considerando la materia prima de origen y las condiciones de reacción en la pirólisis). En este estudio, partiendo de un análisis exhaustivo de las distintas publicaciones existentes sobre la materia, se trata de dar respuesta a la pregunta sobre cuál sería el verdadero potencial de producción de biochar en España, al tiempo que se trata de cuantificar cuál sería la reducción de las emisiones de CO2 a la atmósfera que conllevaría gestionar los residuos (industria papelera, lodos de EDAR, RSU y residuos ganaderos) a través de la pirólisis. En particular, se ha cuantificado la reducción de las emisiones de CO2 a la atmósfera y se ha evaluado cuánto biochar se debería producir a partir de residuos papeleros, lodos de EDAR o residuos ganaderos para aumentar en un 1% la cantidad de materia orgánica en un suelo y para llevar el contenido en materia orgánica de los suelos agrícolas españoles a un 3,5%. En primer lugar, sobre la cuantificación de la reducción de las emisiones, cabe concluir que, en todos los residuos estudiados, y bajo todas las condiciones de reacción consideradas, la reducción de las emisiones de CO2 a la atmósfera sería realmente notable, oscilando entre un 22,53% y un 96,12 %. En segundo lugar, para aumentar en un 1% el contenido medio en materia orgánica de la superficie agrícola española, sería necesario un aporte de 2,03816*108 t de materia orgánica, que supondría una demanda mínima de biochar de 255.408.361 t en el caso de la aplicación de biochar de estiércol de vacuno a Por otro lado, para llevar la materia orgánica de los suelos agrícolas a un 3,5%, la demanda de biochar variaría entre un mínimo de 158.937 t en el (Comunidad Autónoma con menor necesidad de aporte de materia orgánica) illa la Mancha (Comunidad Autónoma que, por el contrario, necesitaría mayor aporte). ABSTRACT Biochar is a carbon-rich material obtained after a biomass pyrolysis procedure. This material has aroused in recent years a great interest in the scientific community, mainly for its ability to improve the productivity of soils, influencing the physico-chemical properties of soils and as means of carbon storage, reducing emissions of CO2 into the atmosphere). Despite the interest that may raise this matter, the fact is that to date, no clear conclusions or definitive progress have been done to create a standardization for the commercialization of biochar, due to the variability of its properties (considering the raw material and the reaction conditions in the pyrolysis). This study, based on a thorough analysis of the various existing literature on the subject and, leaving other approaches that could have been taken of the interest of the subject in question, attempts to provide answers to the question about what would be the true potential production of biochar in Spain and what would be the reduction of CO2 emissions into the atmosphere, which would entail waste management through pyrolysis. In particular, this study has identified the reduction of CO2 emissions into the atmosphere and has analyzed whether the production of biochar could increase the organic matter content of Spanish agricultural soils. Firstly, regarding the quantification of emissions reductions, by referring to the values contained in the work, it can be concluded that the reduction of CO2 emissions to the atmosphere would be really remarkable, ranging from 22.53% to 96.12%. Secondly, to increase by 1% the average content of organic matter in the spanish agricultural area would require a contribution of 2.03816*108 t of organic matter, which would demand a minimum of 255.408.361 t of cattle manure biochar and a maximum demand of 1.746.494.190 t of deinking sludge pyrolyzed at 500C. On the other hand, to reach a 3.5%, the demand for biochar would vary from a minimum of 158.937 t, in case of cattle manure biochar at C applied to the Canary Islands (Autonomous Community with less need for input of organic matter), and a maximum of 694.695.081 in case of applying deinking sludge biochar at C to Castilla la Mancha (Autonomous Region, which needs the highest contribution).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La gasificación de lodos de depuración consiste en la conversión termoquímica del lodo por oxidación parcial a alta temperatura mediante un agente gasificante, que generalmente es aire, oxígeno o vapor de agua. Se trata de una tecnología de gran interés, ya que consigue reducir la masa de estos residuos y permite el aprovechamiento de los gases formados, tanto en la generación de energía térmica y/o eléctrica como en la síntesis de productos químicos orgánicos y combustibles líquidos. Debido a la complejidad de este proceso, es útil el uso de modelos que faciliten su estudio de forma fiable y a bajo coste. El presente Proyecto Fin de Carrera se centra en el diseño de un modelo adimensional de equilibrio en estado estacionario basado en la minimización de la energía libre de Gibbs. Para ello, se ha empleado el software de simulación de procesos Aspen Plus, que posee una amplia base de datos de propiedades físicas y permite gran flexibilidad en el manejo de sólidos. Para la elaboración del modelo se han asumido las hipótesis de mezcla perfecta dentro del reactor y operación isoterma. El gasificador se ha considerado de lecho fluidizado burbujeante, al permitir un buen control de la temperatura y una alta transferencia de materia y energía entre el sólido y el agente gasificante. El modelo desarrollado consta de cuatro etapas. La primera reproduce el proceso de pirólisis o descomposición térmica de los componentes del lodo en ausencia de agente gasificante. En la segunda etapa se simula que todo el nitrógeno y el azufre contenidos en el lodo se transforman en amoniaco y ácido sulfhídrico, respectivamente. En la tercera etapa se produce la gasificación en dos reactores. El primer gasificador alcanza el equilibrio químico mediante la minimización de la energía libre de Gibbs del sistema. En el segundo reactor se establece un equilibrio restringido por medio de la especificación de una aproximación de temperatura para cada reacción. Este método permite validar los resultados del modelo con datos reales. En la última etapa se separa el residuo carbonoso o char (compuesto por carbono y cenizas) del gas de salida, formado por N2, H2, CO, CO2, CH4 (supuesto como único hidrocarburo presente), NH3, H2S y H2O. Este gas debe ser depurado mediante equipos de limpieza aguas abajo. Los resultados de la simulación del modelo han sido validados frente a los valores obtenidos en ensayos previos llevados a cabo en la planta de gasificación a escala de laboratorio ubicada en el Departamento de Ingeniería Química Industrial y del Medio Ambiente de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Estos resultados han mostrado muy buena concordancia con los obtenidos experimentalmente, con un error inferior al 7% en todos los parámetros analizados en el caso de gasificación con aire y menor al 13% cuando se utiliza una mezcla aire/vapor de agua como agente gasificante. Se ha realizado un análisis de sensibilidad con el fin de estudiar la influencia de las condiciones de operación (temperatura, ratio equivalente y ratio vapor/biomasa) sobre los resultados del proceso modelado (composición, producción y poder calorífico inferior de los gases, conversión de carbono y eficiencia de la gasificación). Para ello, se han llevado a cabo diferentes simulaciones modificando la temperatura de gasificación entre 750ºC y 850ºC, el ratio equivalente (ER) entre 0,2 y 0,4 y el ratio vapor/biomasa (S/B) entre 0 y 1. Como ya ocurriera con la validación del modelo, los resultados de las simulaciones bajo las distintas condiciones de gasificación se ajustan de forma satisfactoria a los valores experimentales. Se ha encontrado que un aumento en la temperatura mejora la cantidad y la calidad del gas producido y, por tanto, la eficiencia del proceso. Un incremento del ratio equivalente reduce la concentración de CO y H2 en el gas y, en consecuencia, también su poder calorífico. Sin embargo, valores bajos del ratio equivalente disminuyen la producción de gases y la conversión de carbono. La alimentación de vapor de agua en el sistema mejora todos los parámetros analizados. Por tanto, dentro del rango estudiado, las condiciones de operación que optimizan el proceso de gasificación de lodos consisten en el empleo de mezclas aire/vapor de agua como agente gasificante, una temperatura de 850ºC y un ER de 0,3.