960 resultados para Dental implants surface
Resumo:
Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in other implant connection systems. The purpose of this study was to evaluate the effects of mechanical loading and repeated insertion/removal cycles on the torque loss of abutments with internal tapered connections. Sixty-eight conical implants and 68 abutments of two types were used. They were divided into four groups: groups 1 and 3 received solid abutments, and groups 2 and 4 received two-piece abutments. In groups 1 and 2, abutments were simply installed and uninstalled; torque-in and torque-out values were measured. In groups 3 and 4, abutments were installed, mechanically loaded and uninstalled; torque-in and torque-out values were measured. Under mechanical loading, two-piece abutments were frictionally locked into the implant; thus, data of group 4 were catalogued under two subgroups (4a: torque-out value necessary to loosen the fixation screw; 4b: torque-out value necessary to remove the abutment from the implant). Ten insertion/removal cycles were performed for every implant/abutment assembly. Data were analyzed with a mixed linear model (P <= 0.05). Torque loss was higher in groups 4a and 2 (over 30% loss), followed by group 1 (10.5% loss), group 3 (5.4% loss) and group 4b (39% torque gain). All the results were significantly different. As the number of insertion/removal cycles increased, removal torques tended to be lower. It was concluded that mechanical loading increased removal torque of loaded abutments in comparison with unloaded abutments, and removal torque values tended to decrease as the number of insertion/removal cycles increased. To cite this article:Ricciardi Coppede A, de Mattos MdaGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study.Clin. Oral Impl. Res. 20, 2009; 624-632.doi: 10.1111/j.1600-0501.2008.01690.x.
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The purpose of this study was to compare and evaluate bone and soft tissue levels between immediately placed, immediately restored implants positioned in the esthetic anterior region with different interimplant distances (IID). Methods: Forty-nine patients requiring multiple implant restorations in the anterior regions received 152 implants, which were restored immediately. Periapical radiographs and digital images of 99 interimplant sites were taken at the regular follow-up examinations at 0, 6, 12, and 24 months after surgery. They were digitally recorded and analyzed. The presence of the interproximal papilla was assessed and compared to the distances between the bone crest and the contact point between the natural teeth and the restoration crowns. Results: Implants with an IID <2 mm seemed to lose less bone laterally. When the IID was <2 mm, vertical crestal bone loss was significantly greater than in the group with IID >4 mm. The percentage of the interproximal papilla presence decreased when the distance between the bone crest and the contact point between the two restoration crowns was >6 mm and when two implants were placed at a distance >= 4 mm. Conclusions: To guarantee a better esthetic result in immediately placed, immediately restored implants, the contact point between the two prosthetic crowns should be placed at 3 to 4 mm, and never >6 mm, from the bone peak. Two adjacent implants should be placed at a distance >2 and <4 mm.
Resumo:
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone-to-implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone-to-implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid-etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean(R), Intra-Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 1 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non-loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non-decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface-treated implants positively modulated bone healing at early implantation times compared to the DAE surface.
Resumo:
Purpose: The purpose of this study was to evaluate the bone healing kinetics around commercially pure titanium implants following inferior alveolar nerve (IAN) lateralization in a rabbit model. Materials and Methods: Inferior alveolar nerve lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, 1 implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. During the 8-week healing period, various bone labels were administered for fluorescent microscopy analysis. The animals were euthanized by anesthesia overdose, and the mandibular blocks were exposed by sharp dissection. Nondecalcified samples were prepared for optical light and scanning electron microscopy (SEM) evaluation. Results: SEM evaluation showed bone modeling/remodeling between the IAN and implant surface. Fluorochrome area fraction labeling at different times during the healing period showed that bone apposition mainly occurred during the first 2 weeks after implantation. Conclusions: The results obtained showed that bone healing/deposition occurred between the alveolar nerves in contact with a commercially pure titanium implant. No interaction between the nerve and the implant was detected after the 8-week healing period. Appositional bone healing occurred around the nerve bundle structure, restoring the mandibular canal integrity and morphology.
Resumo:
Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.
Resumo:
Recent years have seen a significant growth in surface modifications in titanium implants, resulting in shorter healing times in regions with low bone density. Among the different techniques, subtraction by chemical agents to increase oxidation has been applied for surface treatment of dental implants. However, this technique is generally unable to remove undesirable oxides, formed spontaneously during machining of titanium parts, raising costs due to additional decontamination stages. In order to solve this problem, the present study used plasma as an energy source to both remove these oxides and oxidize the titanium surface. In this respect, Ti disks were treated by hollow cathode discharge, using a variable DC power supply and vacuum system. Samples were previously submitted to a cleaning process using an atmosphere of Ar, H2 and a mixture of both, for 20 and 60 min. The most efficient cleaning condition was used for oxidation in a mixture of argon (60%) and oxygen (40%) until reaching a pressure of 2.2 mbar for 60 min at 500°C. Surfaces were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), adhesion and cell proliferation. SEM showed less cell spreading and a larger number of projections orfilopodia in the treated samples compared to the control sample. AFM revealed surface defects in the treated samples, with varied geometry between peaks and valleys. Biological assays showed no significant difference in cell adhesion between treated surfaces and the control. With respect to cell proliferation, the treated surface exhibited improved performance when compared to the control sample. We concluded that the process was efficient in removing primary oxides as well as in oxidizing titanium surfaces
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: Commercially pure titanium alloys are currently used as metallic biomaterials in implantology. Corrosion phenomena appear to play a decisive role in metallic implant long-term behavior. Thus, the goal of this study was to examine the genotoxic potential of corrosion eluates obtained from dental implants using Chinese ovary hamster cells in vitro by the single-cell gel (comet) assay. This technique detects deoxyribonucleic acid strand breaks in individual cells in alkaline conditions.Materials and Methods: the materials tested included 3 dental implants commercially available. Each of the tested materials was corroded in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. The Chinese ovary hamster cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37 degrees C.Results: None of the eluates was found to exhibit genotoxicity, regardless of the type of dental implant used.Conclusion: the results suggest that all dental implants tested in this study did not induce deoxyribonucleic acid breakage as depicted by the single-cell gel (comet) assay.
Resumo:
Purpose: The aim of this study was to evaluate by means of digital radiography the behavior of the alveolar bone crest in external hexagon implants following the use of 2 different types of abutments, one for conventional cemented prosthesis and one for modified cemented prosthesis.Methods: Ten external hexagon implants (platform 4.1) were placed in 5 patients. Initial instrumentation was carried out to obtain primary stability of the temporary prostheses under immediate loading. Each patient received both abutments for conventional and modified cemented prosthesis. Standardized digital periapical radiographies were performed at times T0 (immediately after implant placement) and T1 (4 months after implant placement). A straight line was initially established from the implant platform to the distal and mesial periimplantar marginal bone tissue (immediately in contact with the implant) and measured by digital radiography, using Sidexis version 2.3 (Sirona Dental Systems GmbH, Bensheim, Germany) software. The data were submitted to paired-samples t-test analysis.Results: There was no significant difference between the conventional and modified cemented prosthesis. In both cases, t-test results were within the null hypothesis level.Conclusion: The abutment for the modified cemented prosthesis resulted in no significant radiographic difference of alveolar bone crest height, when compared with the conventional cemented prostheses.
Resumo:
Objective: To evaluate the bone regeneration of cervical defects produced around titanium implants filled with blood clot and filled with centrifuged bone marrow (CBM) by means of histomorphometric analysis.Materials and Methods: Twelve rabbits received 2 titanium implants in each right tibia, with the upper cortical prepared with a 5-mm drill and the lower cortex with a 3-mm-diameter drill. Euthanasia was performed to allow analysis at 7, 21, and 60 days after operation. The samples were embedded in light curing resin, cut and stained with alizarin red and Stevenel blue for a histomorphometric analysis of the bone-to-implant contact (BIC) and the bone area around implant (BA). The values obtained were statistically analyzed using the nonparametric Kruskal-Wallis test (P = 0.05).Results: At 60 days postoperation, the groups had their cervical defects completely filled by neo-formed bone tissue. There was no statistically significant difference between the groups regarding BIC and BA during the analyzed periods.Conclusion: There was no difference in the bone repair of periimplant cervical defects with or without the use of CBM. (Implant Dent 2012;21:481-485)
Resumo:
The aim of this study was to evaluate the stress distribution of platform switching implants using a photoelastic method. Three models were constructed of the photoelastic resin PL-2, with a single implant and a screw-retained implant-supported prosthesis. These models were Model A, platform 5.0 mm/abutment 4.1 mm; Model B, platform 4.1 mm/abutment 4.1 mm; and Model C, platform 5.00 mm/abutment 5.00 mm. Axial and oblique (45 degrees) loads of 100 N were applied using a Universal Testing Machine (EMIC DL 3000). Images were photographed with a digital camera and visualized with software (AdobePhotoshop) to facilitate the qualitative analysis. The highest stress concentrations were observed at the apical third of the 3 models. With the oblique load, the highest stress concentrations were located at the implant apex, opposite the load application. Stress concentrations decreased in the cervical region of Model A (platform switching), and Models A (platform switching) and C (conventional/wide-diameter) displayed similar stress magnitudes. Finally, Model B (conventional/regular diameter) displayed the highest stress concentrations of the models tested.
Resumo:
Purpose: This study aimed to evaluate the influence of implants with or without threads representation on the outcome of a two-dimensional finite element (FE) analysis. Materials and Methods: Two-dimensional FE models that reproduced a frontal section of edentulous mandibular posterior bone were constructed using a standard crown/implant/screw system representation. To evaluate the effect of implant threads, two models were created: a model in which the implant threads were accurately simulated (precise model) and a model in which implants with a smooth surface (press-fit implant) were used (simplified model). An evaluation was performed on ANSYS software, in which a load of 133 N was applied at a 30-degree angulation and 2 mm off-axis from the long axis of the implant on the models, The Von Mises stresses were measured. Results: The precise model (1.45 MPa) showed higher maximum stress values than the simplified model (1.2 MPa). Whereas in the cortical bone, the stress values differed by about 36% (292.95 MPa for the precise model and 401.14 MPa for the simplified model), in trabecular bone (19.35 MPa and 20.35 MPa, respectively), the stress distribution and stress values were similar. Stress concentrations occurred around the implant neck and the implant apex. Conclusions: Considering implant and cortical bone analysis, remarkable differences in stress values were found between the models. Although the models showed different absolute stress values, the stress distribution was similar. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1040-1044
Resumo:
Purpose: This study evaluated possible publication bias and its related factors in implant-related research over time. Materials and Methods: Articles published in Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, Implant Dentistry, Journal of Oral Implantology, and The International Journal of Oral & Maxillofacial Implants between 2005 and 2009 were reviewed. Nonoriginal articles were excluded. For each article included, study outcome, extramural funding source, type of study, and geographic origin were recorded. Descriptive and analytic statistics (alpha = .05), including the chi-square test and logistic regression analysis, were performed where appropriate. Results: From a total of 2,085 articles, 1,503 met the inclusion criteria. of the articles analyzed, 1,226 (81.6%), 160 (10.6%), and 117 (7.8%) articles reported positive, negative, and neutral outcomes, respectively. In vitro studies, studies from Asia, and funded animal studies were more likely to report positive outcomes compared to others (P = .02, P < .0001, and P = .009, respectively). Industry-funded studies represented the lowest frequency of positive outcomes versus studies funded by other sources. Conclusions: There were a high number of implant-related studies reporting positive outcomes in the five selected journals. Some selected factors were associated with positive outcome bias. In general, funding was not associated with a positive outcome, except for animal studies. Industry-supported research did not show any association with the publication of positive outcomes. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:1024-1032