952 resultados para Dental Implant
Resumo:
Background: the purpose of this pilot study was to evaluate the healing potential and reosseointegration in ligature-induced peri-implantitis defects adjacent to various dental implant surfaces following lethal photosensitization.Methods: A total of 36 dental implants with 4 different surface coatings (9 commercially pure titanium surface [CPTi]; 9 titanium plasma-sprayed [TPS]; 9 hydroxyapatite [HA]; and 9 acid-etched [AE]) were inserted in 6 male mongrel dogs 3 months after extraction of mandibular premolars. After a 2-month period of ligature-induced peri-implantitis and 12 months of natural peri-implantitis progression, only 19 dental implants remained. The dogs underwent surgical debridement of the remaining dental implant sites and lethal photosensitization by combination of toluidine blue O (100 mug/ml) and irradiation with diode laser. All exposed dental implant surfaces and bone craters were meticulously cleaned by mechanical means, submitted to photodynamic therapy, and guided bone regeneration (GBR) using expanded polytetrafluoroethylene (ePTFE) membranes. Five months later, biopsies of the implant sites were dissected and prepared for ground sectioning and analysis.Results: the percentage of bone fill was HA: 48.28 +/- 15.00; TPS: 39.54 +/- 12.34; AE: 26.88 +/- 22.16; and CPTi: 26.70 +/- 16.50. The percentage of reosseointegration was TPS: 25.25 +/- 11.96; CPTi: 24.91 +/- 17.78; AE: 17.30 +/- 15.41; and HA: 15.83 +/- 9.64.Conclusion: These data suggest that lethal photosensitization may have potential in the treatment of peri-implantitis.
Resumo:
We have developed a biodegradable composite scaffold for bone tissue engineering applications with a pore size and interconnecting macroporosity similar to those of human trabecular bone. The scaffold is fabricated by a process of particle leaching and phase inversion from poly(lactide-co-glycolide) (PLGA) and two calcium phosphate (CaP) phases both of which are resorbable by osteoclasts; the first a particulate within the polymer structure and the second a thin ubiquitous coating. The 3-5 mu m thick osteoconductive surface CaP abrogates the putative foreign body giant cell response to the underlying polymer, while the internal CaP phase provides dimensional stability in an otherwise highly compliant structure. The scaffold may be used as a biomaterial alone, as a carrier for cells or a three-phase drug delivery device. Due to the highly interconnected macroporosity ranging from 81% to 91%, with macropores of 0.8 similar to 1.8 mm, and an ability to wick up blood, the scaffold acts as both a clot-retention device and an osteoconductive support for host bone growth. As a cell delivery vehicle, the scaffold can be first seeded with human mesenchymal cells which can then contribute to bone formation in orthotopic implantation sites, as we show in immune-compromised animal hosts. We have also employed this scaffold in both lithomorph and particulate forms in human patients to maintain alveolar bone height following tooth extraction, and augment alveolar bone height through standard sinus lift approaches. We provide a clinical case report of both of these applications; and we show that the scaffold served to regenerate sufficient bone tissue in the wound site to provide a sound foundation for dental implant placement. At the time of writing, such implants have been in occlusal function for periods of up to 3 years in sites regenerated through the use of the scaffold.
Resumo:
In this work, the chemical structure, the microstructure and the surface morphology of two non-ferrous materials used in dental implants (Ti-6Al-4V and Co-Cr-Mo) were studied. This was done by chemical analysis, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and strength measurements (HV). Metallographic studies reveal that titanium alloy surface present a fine granular binary phase structure, while cobalt alloy present cast dendrite structures with an intense precipitation of carbides. To correlate the macro and microstructure with the mechanical behavior of the material, microhardness measurements were performed. Using the Vickers hardening method, the Ti-6Al-4V alloy yielded strength mean values smaller than the Co-Cr-Mo alloy. Their values are associated to the chemical composition and to the microstructural distribution of these materials. The Ti-6Al-4V alloy presents hardness similar to dental enamel, which suggests better performance as dental implant.
Resumo:
PURPOSE: This review of the literature intends to evaluate the effect of brushes with high frequency motion when compared with manual toothbrushes regarding the indices of plaque and gingival bleeding. METHODS: Patients presenting gingivitis and/or chronic periodontitis were evaluated in addition to patients having osseointegrated implants and fixed orthodontic appliances. Pertinent literature was reviewed to select articles according to previously defined inclusion criteria. RESULTS: In the assessed studies results showed significant decreases in plaque and gingival indices by utilization of both types of brushes. However, in the selected studies where sonic brushes were tested in orthodontic and dental implant patients there was a more significant decrease in the indices. Furthermore, there was no indication of gingival recession attributed to product use. CONCLUSION: Future studies with a more homogeneous methodology and better experiment designs will be needed.
Resumo:
PURPOSE
Resumo:
Calcium phosphate-based bioactive ceramics in various physical and chemical formulations have been extensively utilized as biomaterials for bone regeneration/conduction. However, the determination of their in vivo temporal behavior from the short to long term in humans has been a challenge due to the lack of physical reference for morphologic and morphometric evaluation. The present study evaluated bone morphology and morphometry (bone-to-implant contact [BIC]) around plasma-sprayed hydroxyapatite (PSHA)-coated endosseous implants that were retrieved due to prosthetic reasons while successfully in function at the posterior region of the jaws from as early as 2 months to ~13 years after a 6-month healing period after placement. Bone morphology was evaluated by light microscopy, and BIC was determined using computer software. Irrespective of the time in vivo, lamellar bone was observed in close contact with the implant PSHA-coated surface and between plateaus. BIC ranged from ~35-95%, was highly directional, and Haversian-like osteonic morphology between plateaus was observed for most implants. The PSHA coating was present with little variation in thickness between the samples retrieved regardless of time in vivo. © 2010 by Begell House, Inc.
Resumo:
Aim: Cyclosporine A (CsA) is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA) received daily subcutaneous injection of CsA (10mg/kg body weight) and the control group (CTL) received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter) was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 - p <0.01). In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 - p <0.05). In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 - p= 0.001). Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.
Resumo:
Objectives: To evaluate bone healing around dental implants with established osseointegration in experimental diabetes mellitus (DM) and insulin therapy by histomorphometric and removal torque analysis in a rat model. Materials and methods: A total of 80 male Wistar rats received a titanium implant in the tibiae proximal methaphysis. After a healing period of 60 days, the rats were divided into four groups of 20 animals each: a 2-month control group, sacrificed at time (group A), a diabetic group (group D), an insulin group (group I), and a 4-month control group (group C), subdivided half for removal torque and half for histomorphometric analysis. In the D and I groups the DM was induced by a single injection of 40 mg/kg body weight streptozotocin (STZ). Two days after DM induction, group I received subcutaneous doses of insulin twice a day, during 2 months. Groups C and D received only saline. Two months after induction of DM, the animals of groups D, C and I were sacrificed. The plasmatic levels of glucose (GPL) were monitored throughout the experiment. Evaluation of the percentages of bone-to-implant contact and bone area within the limits of the implant threads was done by histomorphometric and mechanical torque analysis. Data were analyzed by anova at significant level of 5%. Results: The GPL were within normal range for groups A, C and I and higher for group D. The means and standard deviations (SD) for histomorphometric bone area showed significant difference between group D (69.34 ± 5.00%) and groups C (78.20 ± 4.88%) and I (79.63 ± 4.97%). Related to bone-to-implant contact there were no significant difference between the groups D (60.81 + 6.83%), C (63.37 + 5.88%) and I (66.97 + 4.13%). The means and SD for removal torque showed that group D (12.91 ± 2.51 Ncm) was statistically lower than group I (17.10 ± 3.06 Ncm) and C (16.95 ± 5.39 Ncm). Conclusions: Diabetes mellitus impaired the bone healing around dental implants with established osseointegration because the results presented a lower percentage of bone area in group D in relation to groups C and I resulting in a lowest torque values for implant removal. Moreover, insulin therapy prevents the occurrence of bone abnormalities found in diabetic animals and osseointegration was not compromised. © 2012 John Wiley & Sons A/S.
Resumo:
Maxillary defects resulting from cancer, trauma, and congenital malformation affect the chewing efficiency and retention of dentures in these patients. The use of implant-retained palatal obturator dentures has improved the self-esteem and quality of life of several subjects. We evaluate the stress distribution of implant-retained palatal obturator dentures with different attachment systems by using the photoelastic analysis images. Two photoelastic models of the maxilla with oral-sinus-nasal communication were fabricated. One model received three implants on the left side of the alveolar ridge (incisive, canine, and first molar regions) and the other did not receive implants. Afterwards, a conventional palatal obturator denture (control) and two implant-retained palatal obturator dentures with different attachment systems (O-ring; bar-clip) were constructed. Models were placed in a circular polariscope and a 100-N axial load was applied in three different regions (incisive, canine, and first molar regions) by using a universal testing machine. The results were photographed and analyzed qualitatively using a software (Adobe Photoshop). The bar-clip system exhibited the highest stress concentration followed by the O-ring system and conventional denture (control). Images generated by the photoelastic method help in the oral rehabilitator planning. © 2013 SPIE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR