893 resultados para Denia-Historia-S. III a. C.-S. XVII d. C.


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colofón

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traductor consta en preliminares

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Según Palau, 42271 y Aguilar Piñal, 1036 el autor es Canicia y Rotla, Luis Pascual

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copia digital: Biblioteca Valenciana, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple robot, single operator scenarios suppose a challenge in terms of human factors. Two relevant issues are keeping the situational awareness and managing the workload of operators. In order to address these problems, this work analyses the management of information and commands in multi-robot missions. About the information, this paper proposes a selection based on mission and operator states. Regarding the commands, this work reflects about the levels of automation and the methods of commanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation–reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s−1 for *Zn-cyt c → Fe(III)-cyt c; 2000 s−1 for Fe(II)-cyt c → Zn-cyt c+)] over a Zn–Fe distance of 24.1 Å closely match those for intraprotein electron tunneling over similar donor–acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein–protein interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutation studies have identified a region of the S5-S6 loop of voltage-gated K+ channels (P region) responsible for teraethylammonium (TEA) block and permeation/selectivity properties. We previously modeled a similar region of the Na+ channel as four beta-hairpins with the C strands from each of the domains forming the external vestibule and with charged residues at the beta-turns forming the selectivity filter. However, the K+ channel P region amino acid composition is much more hydrophobic in this area. Here we propose a structural motif for the K+ channel pore based on the following postulates (Kv2.1 numbering). (i) The external TEA binding site is formed by four Tyr-380 residues; P loop residues participating in the internal TEA binding site are four Met-371 and Thr-372 residues. (ii) P regions form extended hairpins with beta-turns in sequence ITMT. (iii) only C ends of hairpins form the inner walls of the pore. (iv) They are extended nonregular strands with backbone carbonyl oxygens of segment VGYGD facing the pore with the conformation BRLRL. (v) Juxtaposition of P loops of the four subunits forms the pore. Fitting the external and internal TEA sites to TEA molecules predicts an hourglass-like pore with the narrowest point (GYG) as wide as 5.5 A, suggesting that selectivity may be achieved by interactions of carbonyls with partially hydrated K+. Other potential cation binding sites also exist in the pore.