161 resultados para Dendropsophus anceps
Resumo:
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macrofossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.
Resumo:
Microcladia exserta Wynne, determined by M.J. Wynee 1983
Resumo:
The Amazon savannas occur as isolated patches throughout extensive areas of forest in the states of Amapá, Amazonas, Pará, and Roraima. There is a considerable variation in the composition of anuran assemblages in the localities and phytophysiognomies of Amazon savannas and given the absence of studies on reproductive behavior, a systematic and geographically wide sampling has been carried out in the Amapá savanna, located in the Eastern Amazon. The study was conducted in a savanna area in the state of Amapá to examine the composition, ecology, and reproductive behavior of anuran amphibians. We carried out 24 field trips in each phytophysiognomy (gramineous-woody savana, gramineous-herbaceous-woody savana, park savana, and arboreal savanna); for analysis of reproductive behavior observations were made during the period January to December 2013, lasting four consecutive days. Samples were collected by active and acoustic search along 20 plots of 100x50 meters. Twenty-one anuran species were recorded, of which four are new records for the state of Amapá: Dendropsophus walfordi, Scinax fuscomarginatus, Pseudopaludicola boliviana e Elachistocleis helianneae. The KruskalWallis ANOVA revealed significant differences between richness and species diversity in the phytophysiognomies (p < 0.05). The Bray-Curtis similarity coefficient divided the phytophysiognomies into three groups: arboreal savana, gramineous-woody savanna and gramineous-herbaceous-woody savanna, and park savanna. According to the non-metric multidimensional scaling, the structure of the anuran community resulted in a separation into three phytophysiognomies, with significant differences in the structure of communities (ANOSIM, R = 0.823; p < 0.001). In the study of community ecology, the results obtained for spatial, temporal, and trophic niche breadth suggest that the assemblage of anurans of the Amapá savanna is not composed of predominantly generalist species. Also, the presence of other specialist anurans may explain the processes of speciation associated with the isolation of habitats, resulting in heterogeneity and spatial discontinuity in the phytophysiognomies with open formations. The null model analysis revealed that the community is structured based on temporal and trophic niche, indicating a significant influence of contemporary ecological factors on the assemblage. The absence of structure based on spatial niche might be explained by the spatial segregation in the distribution and occupation of anurans in the different phytophysiognomies of the Amapá savanna. Regarding the reproductive behavior of anurans, 11 species were classified as having a long breeding season, intrinsically associated with the rainy season and the reproductive mode of most species that lay egg clutches in lentic water bodies. Six reproductive modes were recorded and parental care was observed in Leptodactylus macrosternum and L. podicipinus, whose reproductive mode is characterized by foam nests. Regarding behavioral reproductive strategies, calling males were observed in all species of anurans, satellite males were recorded only for D. walfordi, Hypsiboas multifasciatus, S. nebulosus and S. fuscomarginatus; active search for females was observed for Phyllomedusa hypochondrialis and L. fuscus, and male displacement was recorded only for Rhinella major and R. margaritifera. Of the reproductive behaviors observed, throat and vocal sac display is associated with courtship and territorial behavior exhibited by males. In addition to courtship behavior, visual signals associated with courtship strategies were recorded for the anurans of the Amapá savanna.
Resumo:
Radok Lake in Amery Oasis, East Antarctica, has a water depth of ca. 360 m, making it the deepest non-subglacial lake in Antarctica. Limnological analyses revealed that the lake had, despite a 3 m thick ice cover, a completely mixed water column during austral summer 2001/2002. High oxygen contents, low ion concentrations, and lack of planktonic diatoms throughout the water column indicate that Radok Lake is ultra-oligotrophic today.The late glacial and postglacial lake history is documented in a succession of glacial, glaciolimnic, and limnic sediments at different locations in the lake basin. The sediments record regional differences and past changes in allochthonous sediment supply and lake productivity. However, the lack of age control on these changes, due to extensive sediment redeposition and the lack of applicable dating methods, excluded Radok Lake sediments for advanced paleoenvironmental reconstructions.
Resumo:
Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.
Resumo:
Based on 66 surface sediment samples collected in the SW Atlantic Ocean between 27 and 50°S, this study presents an overview of the spatial distribution of biogenic opal and diatom concentrations, and diatom assemblages. Biogenic opal has highest values in the deepest, pelagic stations and decreases toward the slope. Diatoms closely follow the spatial trend of opal. Diatom assemblages reflect the present-day dominant hydrographical features. Antarctic diatoms are the main contributors to the preserved diatom community in core top sediments, with coastal planktonic and tropical/subtropical diatoms as secondary components. Dominance of Antarctic diatoms between 35 and 50°S in the pelagic realm mirrors the northward displacement of Antarctic-source water masses, characterized by high nutrient content and low salinity. Northward of ca. 35°S, the highest contribution of tropical/subtropical, pelagic diatoms, typical for nutrient-poor and high salinity waters, matches the main southward path of the Brazil Current. Mixing of Antarctic and tropical waters down up to 45°S is clearly illustrated by the diatom assemblage. Concentrations of biogenic opal and diatoms rather reflect the path of predominant water masses, but are less correlated with surface water productivity in the SW Atlantic.