984 resultados para Delaware Infantry. Kent County Militia Regt.
Resumo:
In this paper, taking the northern region of Changxing County for example, with ammonia nitrogen as a pollution assessment index, we used an improved export coefficient method for estimate polluting load of non-point source pollution (NSP) and the social pollution survey data in the study area to estimate point source pollution. By comparing the total pollution output and the national surface water environmental quality standards find that the whole study area achieves the second water quality standard. However, Jiapu Township exceeds the water quality standards seriously because of the superfluous point source pollution. The water quality of other Townships is good. Further analysis showed that different types of land use and proportions in the northern region of Changxing County have a significant impact on the non-point source pollution, the general law is farmland contributes the largest share of the non-point source pollution output, followed by residential area and bare land, besides, with the increase in the proportion of forest and the decrease of farmland and residential area, the non-point source pollution reduces gradually. © 2010 IEEE.
Resumo:
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.
Resumo:
Tese apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais, especialidade em Sociologia