883 resultados para Degeneration
Resumo:
BACKGROUND/AIMS: The purpose of this systematic review was to identify the frequency and type of patient-reported outcome measures (PROMs) used in recent randomised controlled trials (RCTs) for age-related macular degeneration (AMD).
METHODS: The authors conducted a systematic search between January 2010 and November 2013 in MEDLINE, EMBASE, Scopus, Cochrane Library (Central) and the clinical trials registries (http://www.controlled-trials.com and http://www.ClinicalTrials.gov) according to defined inclusion criteria (RCTs on AMD in English). Two independent reviewers evaluated studies for inclusion. One reviewer extracted data of included studies, and a second masked reviewer assessed 10% to confirm accuracy in data collection. Reference lists of included papers and appendices of relevant Cochrane systematic reviews were scanned to identify other relevant RCTs. Information collected on extracted outcomes was analysed using descriptive statistics.
RESULTS: Literature and registry search yielded 3816 abstracts of journal articles and 493 records from trial registries. A total of 177 RCTs were deemed to have met inclusion criteria. Of the 858 outcomes reported, 38 outcomes were identified as PROMs (4.4%). Of the 177 RCTs examined, PROMs were used in 25 trials (14.1%). The National Eye Institute Visual Function Questionnaire-25 was the most frequently used PROM instrument (64% of RCTs with PROMs included).
CONCLUSIONS: This review highlights that a small proportion of AMD RCTs included PROMs as outcome measures and that there was a variety in the instruments used.
Resumo:
Objectives: To explore the views of eye health professionals and service users on shared community and hospital care for wet or neovascular age-related macular degeneration (nAMD).
Method: Using maximum variation sampling, 5 focus groups and 10 interviews were conducted with 23 service users and 24 eye health professionals from across the UK (consisting of 8 optometrists, 6 ophthalmologists, 6 commissioners, 2 public health representatives and 2 clinical eye care advisors to local Clinical Commissioning Groups). Data were transcribed verbatim and analysed thematically using constant comparative techniques derived from grounded theory methodology.
Results: The needs and preferences of those with nAMD appear to be at odds with the current service being provided. There was enthusiasm among health professionals and service users about the possibility of shared care for nAMD as it was felt to have the potential to relieve hospital eye service burden and represent a more patient-centred option, but there were a number of perceived barriers to implementation. Some service users and ophthalmologists voiced concerns about optometrist competency and the potential for delays with referrals to secondary care if stable nAMD became active again. The health professionals were divided as to whether shared care was financially more efficient than the current model of care. Specialist training for optometrists, under the supervision of ophthalmologists, was deemed to be the most effective method of training and was perceived to have the potential to improve the communication and trust that shared care would require.
Conclusions: While shared care is perceived to represent a promising model of nAMD care, voiced concerns suggest that there would need to be greater collaboration between ophthalmology and optometry, in terms of interprofessional trust and communication.
Resumo:
PurposeThe selection of suitable outcomes and sample size calculation are critical factors in the design of a randomised controlled trial (RCT). The goal of this study was to identify the range of outcomes and information on sample size calculation in RCTs on geographic atrophy (GA).MethodsWe carried out a systematic review of age-related macular degeneration (AMD) RCTs. We searched MEDLINE, EMBASE, Scopus, Cochrane Library, www.controlled-trials.com, and www.ClinicalTrials.gov. Two independent reviewers screened records. One reviewer collected data and the second reviewer appraised 10% of collected data. We scanned references lists of selected papers to include other relevant RCTs.ResultsLiterature and registry search identified 3816 abstracts of journal articles and 493 records from trial registries. From a total of 177 RCTs on all types of AMD, 23 RCTs on GA were included. Eighty-one clinical outcomes were identified. Visual acuity (VA) was the most frequently used outcome, presented in 18 out of 23 RCTs and followed by the measures of lesion area. For sample size analysis, 8 GA RCTs were included. None of them provided sufficient Information on sample size calculations.ConclusionsThis systematic review illustrates a lack of standardisation in terms of outcome reporting in GA trials and issues regarding sample size calculation. These limitations significantly hamper attempts to compare outcomes across studies and also perform meta-analyses.
Resumo:
Purpose: To compare white blood cell populations from persons with neovascular age-related macular degeneration (nAMD) with that of age-matched controls.
Methods: Immunophenotyping for white blood cell populations (including CD14++CD16-, CD14++CD16+ and CD14+CD16++ monocytes, CD4 and CD8 T-lymphocytes, CD56 natural killer cells, CD19 B-lymphocytes and CD16+HLA-DR- neutrophils), chemokine receptor expression analysis (CX3CR1 and CCR2) as well as cell activation analysis (MHC-II, HLA-DR, CD62L, STAT3) was performed using samples of peripheral blood from nAMD patients and age- and gender-matched controls.
Results: The percentage of CD4+ T cells was significantly reduced while the percentage of CD11b+ cells and CD16+HLA-DR- neutrophils was significantly increased in nAMD patients compared to controls. The percentage of classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocytes was similar between nAMD patients and controls, however there was a significant increase of CX3CR1 on the intermediate monocyte subset and on CD16+HLA-DR- neutrophils in nAMD compared to controls. HLA-DR was significantly increased in all monocyte subsets in nAMD compared to controls. Activation of Signal Transducer and Activator of Transcription 3 (STAT3) was significantly increased in nAMD patients compared to controls following stimulation with IL6.
Conclusions: Our results suggest an increased activation of the innate immune system in patients with nAMD. A better understanding of the role of the innate immune system in the pathogenesis of nAMD may help identify novel biomarkers and thus development of improved therapeutic strategies.
Resumo:
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Resumo:
Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in the United States. The vision-threatening processes of neuroglial and vascular dysfunction in DR occur in concert, driven by hyperglycemia and propelled by a pathway of inflammation, ischemia, vasodegeneration, and breakdown of the blood retinal barrier. Currently, no therapies exist for normalizing the vasculature in DR. Here we show that a single intravitreal dose of adeno-associated virus serotype 2 encoding a more stable, soluble, and potent form of angiopoietin 1 (AAV2.COMP-Ang1) can ameliorate the structural and functional hallmarks of DR in Ins2Akita mice, with sustained effects observed through six months. In early DR, AAV2.COMP-Ang1 restored leukocyte-endothelial interaction, retinal oxygenation, vascular density, vascular marker expression, vessel permeability, retinal thickness, inner retinal cellularity, and retinal neurophysiological response to levels comparable to non-diabetic controls. In late DR, AAV2.COMP-Ang1 enhanced the therapeutic benefit of intravitreally-delivered endothelial colony-forming cells by promoting their integration into the vasculature and thereby stemming further visual decline. AAV2.COMP-Ang1 single-dose gene therapy can prevent neurovascular pathology, support vascular regeneration, and stabilize vision in DR.
Resumo:
BACKGROUND: The wingless-type MMTV integration site (Wnt) signaling is a group of signal transduction pathways. In canonical Wnt pathway, Wnt ligands bind to low-density lipoprotein receptor-related protein 5 or 6 (LRP5 or LRP6), resulting in phosphorylation and activation of the receptor. We hypothesize that canonical Wnt pathway plays a role in the retinal lesion of age-related macular degeneration (AMD), a leading cause of irreversible central visual loss in elderly.
METHODS: We examined LRP6 phosphorylation and Wnt signaling cascade in human retinal sections and plasma kallistatin, an endogenous inhibitor of the Wnt pathway in AMD patients and non-AMD subjects. We also used the Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mouse models with AMD-like retinal degeneration to further explore the involvement of Wnt signaling activation in the retinal lesions in those models and to preclinically evaluate the role of Wnt signaling suppression as a potential therapeutic option for AMD.
RESULTS: We found higher levels of LRP6 (a key Wnt signaling receptor) protein phosphorylation and transcripts of the Wnt pathway-targeted genes, as well as higher beta-catenin protein in AMD macula compared to controls. Kallistatin was decreased in the plasma of AMD patients. Retinal non-phosphorylated-β-catenin and phosphorylated-LRP6 were higher in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice than that in wild type. Intravitreal administration of an anti-LRP6 antibody slowed the progression of retinal lesions in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 and Ccl2 (-/-) /Cx3cr1 (gfp/gfp) mice. Electroretinography of treated eyes exhibited larger amplitudes compared to controls in both mouse models. A2E, a retinoid byproduct associated with AMD was lower in the treated eyes of Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 mice. Anti-LRP6 also suppressed the expression of Tnf-α and Icam-1 in Ccl2 (-/-) /Cx3cr1 (-/-) /rd8 retinas.
CONCLUSIONS: Wnt signaling may be disturbed in AMD patients, which could contribute to the retinal inflammation and increased A2E levels found in AMD. Aberrant activation of canonical Wnt signaling might also contribute to the focal retinal degenerative lesions of mouse models with Ccl2 and Cx3cr1 deficiency, and intravitreal administration of anti-LRP6 antibody could be beneficial by deactivating the canonical Wnt pathway.
Resumo:
BACKGROUND: Reactive microglia are commonly seen in retinal degenerative diseases, and neurotoxic microglia responses can contribute to photoreceptor cell death. We and others have previously shown that translocator protein (18 kDa) (TSPO) is highly induced in retinal degenerations and that the selective TSPO ligand XBD173 (AC-5216, emapunil) exerts strong anti-inflammatory effects on microglia in vitro and ex vivo. Here, we investigated whether targeting TSPO with XBD173 has immuno-modulatory and neuroprotective functions in two mouse models of acute retinal degeneration using bright white light exposure.
METHODS: BALB/cJ and Cx3cr1 (GFP/+) mice received intraperitoneal injections of 10 mg/kg XBD173 or vehicle for five consecutive days, starting 1 day prior to exposure to either 15,000 lux white light for 1 h or 50,000 lux focal light for 10 min, respectively. The effects of XBD173 treatment on microglia and Müller cell reactivity were analyzed by immuno-stainings of retinal sections and flat mounts, fluorescence-activated cell sorting (FACS) analysis, and mRNA expression of microglia markers using quantitative real-time PCR (qRT-PCR). Optical coherence tomography (OCT), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings, and morphometric analyses were used to quantify the extent of retinal degeneration and photoreceptor apoptosis.
RESULTS: Four days after the mice were challenged with bright white light, a large number of amoeboid-shaped alerted microglia appeared in the degenerating outer retina, which was nearly completely prevented by treatment with XBD173. This treatment also down-regulated the expression of TSPO protein in microglia but did not change the TSPO levels in the retinal pigment epithelium (RPE). RT-PCR analysis showed that the microglia/macrophage markers Cd68 and activated microglia/macrophage whey acidic protein (Amwap) as well as the pro-inflammatory genes Ccl2 and Il6 were reduced after XBD173 treatment. Light-induced degeneration of the outer retina was nearly fully blocked by XBD173 treatment. We further confirmed these findings in an independent mouse model of focal light damage. Retinas of animals receiving XBD173 therapy displayed significantly more ramified non-reactive microglia and more viable arrestin-positive cone photoreceptors than vehicle controls.
CONCLUSIONS: Targeting TSPO with XBD173 effectively counter-regulates microgliosis and ameliorates light-induced retinal damage, highlighting a new pharmacological concept for the treatment of retinal degenerations.
Resumo:
Neovascular age-related macular degeneration (nAMD) is the leading cause of irreversible blindness in developed countries. Recent advances have highlighted the essential role of inflammation in the development of the disease. In addition to local retinal chronic inflammatory response, systemic immune alterations have also been observed in AMD patients. In this study we investigated the association between the frequency of circulating leukocyte populations and the prevalence as well as clinical presentations of nAMD. Leukocyte subsets of 103 nAMD patients (most of them were receiving anti-VEGF therapy prior to enrolment) and 26 controls were analysed by flow cytometry by relative cell size, granularity and surface markers. Circulating CD11b(+) cells and CD16(hi)HLA-DR(-) neutrophils were significantly increased (P = 0.015 and 0.009 respectively) in nAMD when compared to controls. The percentage of circulating CD4(+) T-cells was reduced in nAMD patients without subretinal fibrosis (P = 0.026) compared to patients with subretinal fibrosis. There was no correlation between the percentage of circulating leukocytes and the responsiveness to anti-VEGF therapy in nAMD patients. Our results suggest that higher levels of circulating CD11b(+) cells and neutrophils are associated with nAMD and that reduced levels of CD4(+) T-cells are associated with the absence of subretinal fibrosis in nAMD.
Resumo:
Objectives: Given the clinical and pathological similarities between age-relatedmacular degeneration (AMD) and Alzheimer disease (AD), to assess whether AMDassociatedsingle nucleotide polymorphisms (SNPs), including those from complementrelatedgenes, are associated with AD.
Design: A case-control association study-typedesign.
Setting: A UK tertiary care dementia clinic.
Participants: 322 cognitivelynormal participants and 258 cases with a clinical diagnosis of AD.
Measurements:Polymorphisms in the following genes were studied: CFH, ARMS2, C2/CFB, C3, CFI/PLA2G12a, SERPING1, TLR3, TLR4, CRP, APOE, and TOMM40. Haplotypes were analysedfor CFH, TOMM40, and APOE. Univariate analysis was performed for each geneticchange and case-comparator status, and then correction for multiple testing performed.
Results: The presence of an ε4 APOE allele was significantly associated with AD. Noassociation was evident between CFH SNPs or haplotypes, or other AMD-associated SNPstested, and AD. The exceptions were TOMM40 SNPs, which were associated with AD evenafter correction for multiple comparisons. The associations disappeared, however, whenentered into a regression model including APOE genotypes.
Conclusions: The resultsfor most SNPs tested, as well as CFH haplotypes, are novel. The functional effects ofabnormal complement activity in AD’s pathogenesis may be contradictory, butmethodological reasons may underlie the lack of association—for example, geneticchanges other than SNPs being involved.
Resumo:
Introduction: Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly mostly due to the development of neovascular AMD (nAMD) or geographic atrophy (GA). Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents are an effective therapeutic option for nAMD. Following anti-VEGF treatments, increased atrophy of the retinal pigment epithelium (RPE) and choriocapillaries that resembles GA has been reported. We sought to evaluate the underlying genetic influences that may contribute to this process. Methods: We selected 68 single nucleotide polymorphisms (SNPs) from genes previously identified as susceptibility factors in AMD, along with 43 SNPs from genes encoding the VEGF protein and its cognate receptors as this pathway is targeted by treatment. We enrolled 467 consecutive patients (Feb 2009 to October 2011) with nAMD who received anti-VEGF therapy. The acutely presenting eye was designated as the study eye and retinal tomograms graded for macular atrophy at study exit. Statistical analysis was performed using PLINK to identify SNPs with a P value < 0.01. Logistic regression models with macular atrophy as dependent variable were fitted with age, gender, smoking status, common genetic risk factors and the identified SNPs as explanatory variables. Results: Grading for macular atrophy was available in 304 study eyes and 70% (214) were classified as showing macular atrophy. In the unadjusted analysis we observed significant associations between macular atrophy and two independent SNPs in the APCS gene: rs6695377: odds ratio (OR) = 1.98; 95% confidence intervals (CI): 1.23, 3.19; P = 0.004; rs1446965: OR = 2.49, CI: 1.29, 4.82; P = 0.006 and these associations remained significant after adjustment for covariates. Conclusions: VEGF is a mitogen and growth factor for choroidal blood vessels and the RPE and its inhibition could lead to atrophy of these key tissues. Anti-VEGF treatment can interfere with ocular vascular maintenance and may be associated with RPE and choroidal atrophy. As such, these medications, which block the effects of VEGF, may influence the development of GA. The top associated SNPs are found in the APCS gene, a highly conserved glycoprotein that encodes Serum amyloid P (SAP) which opsonizes apoptotic cells. SAP can bind to and activate complement components via binding to C1q, a mechanism by which SAP may remove cellular debris, affecting regulation of the three complement pathways.
Resumo:
Investigative Ophthalmology & Visual Science Volume 56 Issue 7 Pages 3760-3760
Resumo:
Background: The aim of this study was to investigate the plasma levels of complement C3a, C4a, and C5a in different types of neovascular age-related macular degeneration (nAMD) and whether the levels were related to patients’ responsiveness to anti-VEGF therapy.
Results: Ninety-six nAMD patients (including 61 with choroidal neovascularisation (CNV), 17 with retinal angiomatous proliferation (RAP), 14 with polypoidal choroidal vasculopathy (PCV) and 4 unclassified patients) and 43 controls were recruited to this case–control study. Subretinal fibrosis was observed in 45 nAMD patients and was absent in 51 nAMD patients. In addition, the responsiveness to anti-VEGF (Lucentis) therapy was also evaluated in nAMD patients. Forty-four patients were complete responders, 48 were partially responders, and only 4 patients did not respond to the therapy. The plasma levels of C3a, C4a and C5a were significantly higher in nAMD patients compared to
controls. Further analysis of nAMD subgroups showed that the levels of C3a, C4a and C5a were significantly increased in patients with CNV but not RAP and PCV. Significantly increased levels of C3a, C4a and C5a were also observed in nAMD patients with subretinal fibrosis but not in those without subretinal fibrosis. Higher levels of C3a were observed in nAMD patients who responded partially to anti-VEGF therapy.
Conclusions: Our results suggest increased systemic complement activation in nAMD patients with CNV but not RAP and PCV. Our results also suggest that higher levels of systemic complement activation may increase the risk of subretinal fibrosis in nAMD patients