776 resultados para Defect Prediction
Resumo:
The identification of new and druggable targets in bacteria is a critical endeavour in pharmaceutical research of novel antibiotics to fight infectious agents. The rapid emergence of resistant bacteria makes today's antibiotics more and more ineffective, consequently increasing the need for new pharmacological targets and novel classes of antibacterial drugs. A new model that combines the singular value decomposition technique with biological filters comprised of a set of protein properties associated with bacterial drug targets and similarity to protein-coding essential genes of E. coli has been developed to predict potential drug targets in the Enterobacteriaceae family [1]. This model identified 99 potential target proteins amongst the studied bacterial family, exhibiting eight different functions that suggest that the disruption of the activities of these proteins is critical for cells. Out of these candidates, one was selected for target confirmation. To find target modulators, receptor-based pharmacophore hypotheses were built and used in the screening of a virtual library of compounds. Postscreening filters were based on physicochemical and topological similarity to known Gram-negative antibiotics and applied to the retrieved compounds. Screening hits passing all filters were docked into the proteins catalytic groove and 15 of the most promising compounds were purchased from their chemical vendors to be experimentally tested in vitro. To the best of our knowledge, this is the first attempt to rationalize the search of compounds to probe the relevance of this candidate as a new pharmacological target.
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
Beginning with a patient presenting with an atrial septal defect (ASD) of the secundum type, the genealogy was identified in four affected individuals who belonged to three successive generations of the same family. The defects were visually confirmed in all individuals and were found to be anatomically similar. No other congenital malformations were present in these individuals. The genealogy was identified in 1972, when ASD recurred in two generations, and it was concluded that the mechanism of transmission was autosomal recessive. The fifth individual, identified 21 years later, and having an anomaly identical to that of the others, was the child of a couple who had no consaguinity and whose mother was a member of the previously studied genealogy. Considering the absence of phenotype in the parents and the rarity of the ASD gene in the general population, the occurrence of the uniparental disomy for this family nucleus, and the same autosomal recessive mechanism of transmission by this affected individual is possible. This study reports the familial occurrence of ASD by genetic mechanisms of transmission, emphasizing the necessity for genetic-clinical studies in members of the familial nucleus in order to detect new carriers, who usually are asymptomatic, thereby allowing for early and adequate treatment of individuals who may be affected.
Resumo:
Double outlet right ventricle (DORV) is a heterogeneous group of abnormal ventriculoarterial connections where, by definition, both great arteries (pulmonary artery and aorta) arise primarily from the morphologically right ventricle. This condition affects 1-1.5% of the patients with congenital heart diseases, with a frequency of 1 in each 10,000 live births. We report the case of an 18-day-old infant with DORV and extremely rare anatomical features, such as anterior and left-sided aorta and subpulmonary ventricular septal defect (VSD). In addition to the anatomic features, the role of the echocardiogram for guiding the diagnosis and the surgical therapy of this congenital heart disease are discussed.
Resumo:
OBJECTIVE: To study mitral valve function in the postoperative period after correction of the partial form of atrioventricular septal defect. METHODS: Fifty patients underwent surgical correction of the partial form of atrioventricular septal defect. Their mean age was 11.8 years and 62% of the patients were males. Preoperative echocardiography showed moderate and severe mitral insufficiency in 44% of the patients. The mitral valve cleft was sutured in 45 (90%) patients (group II - GII). Echocardiographies were performed in the early postoperative period, and 6 and 12 months after hospital discharge. RESULTS: The patients who had some type of arrhythmia in the postoperative period had ostium primum atrial septal defect of a larger size (2.74 x 2.08 cm). All 5 patients in group I (GI), who did not undergo closure of the cleft, had a competent mitral valve or mild mitral insufficiency in the preoperative period. One of these patients began to have moderate mitral insufficiency in the postoperative period. On the other hand, in GII, 88.8% and 82.2% of the patients had competent mitral valve or mild mitral insufficiency in the early and late postoperative periods, respectively. CONCLUSION: The mitral valve cleft was repaired in 90% of cases. Echocardiography revealed competent mitral valve or mild mitral insufficiency in 88.8% and 82.2% of GII patients in the early and late postoperative periods, respectively.
Resumo:
Background: According to some international studies, patients with acute coronary syndrome (ACS) and increased left atrial volume index (LAVI) have worse long-term prognosis. However, national Brazilian studies confirming this prediction are still lacking. Objective: To evaluate LAVI as a predictor of major cardiovascular events (MCE) in patients with ACS during a 365-day follow-up. Methods: Prospective cohort of 171 patients diagnosed with ACS whose LAVI was calculated within 48 hours after hospital admission. According to LAVI, two groups were categorized: normal LAVI (≤ 32 mL/m2) and increased LAVI (> 32 mL/m2). Both groups were compared regarding clinical and echocardiographic characteristics, in- and out-of-hospital outcomes, and occurrence of ECM in up to 365 days. Results: Increased LAVI was observed in 78 patients (45%), and was associated with older age, higher body mass index, hypertension, history of myocardial infarction and previous angioplasty, and lower creatinine clearance and ejection fraction. During hospitalization, acute pulmonary edema was more frequent in patients with increased LAVI (14.1% vs. 4.3%, p = 0.024). After discharge, the occurrence of combined outcome for MCE was higher (p = 0.001) in the group with increased LAVI (26%) as compared to the normal LAVI group (7%) [RR (95% CI) = 3.46 (1.54-7.73) vs. 0.80 (0.69-0.92)]. After Cox regression, increased LAVI increased the probability of MCE (HR = 3.08, 95% CI = 1.28-7.40, p = 0.012). Conclusion: Increased LAVI is an important predictor of MCE in a one-year follow-up.
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Background: Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective: To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods: This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all-cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results: G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 - 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 - 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion: Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia.
Resumo:
Data Mining, Vision Restoration, Treatment outcome prediction, Self-Organising-Map
Resumo:
Abstract Background: Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. Objective: To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. Methods: 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Results: Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Conclusion: Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients.