992 resultados para Decoupling Vector Field
Resumo:
Chagas disease prevention remains mostly based on triatomine vector control to reduce or eliminate house infestation with these bugs. The level of adaptation of triatomines to human housing is a key part of vector competence and needs to be precisely evaluated to allow for the design of effective vector control strategies. In this review, we examine how the domiciliation/intrusion level of different triatomine species/populations has been defined and measured and discuss how these concepts may be improved for a better understanding of their ecology and evolution, as well as for the design of more effective control strategies against a large variety of triatomine species. We suggest that a major limitation of current criteria for classifying triatomines into sylvatic, intrusive, domiciliary and domestic species is that these are essentially qualitative and do not rely on quantitative variables measuring population sustainability and fitness in their different habitats. However, such assessments may be derived from further analysis and modelling of field data. Such approaches can shed new light on the domiciliation process of triatomines and may represent a key tool for decision-making and the design of vector control interventions.
Resumo:
Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.
Resumo:
The detection of Parkinson's disease (PD) in its preclinical stages prior to outright neurodegeneration is essential to the development of neuroprotective therapies and could reduce the number of misdiagnosed patients. However, early diagnosis is currently hampered by lack of reliable biomarkers. (1) H magnetic resonance spectroscopy (MRS) offers a noninvasive measure of brain metabolite levels that allows the identification of such potential biomarkers. This study aimed at using MRS on an ultrahigh field 14.1 T magnet to explore the striatal metabolic changes occurring in two different rat models of the disease. Rats lesioned by the injection of 6-hydroxydopamine (6-OHDA) in the medial-forebrain bundle were used to model a complete nigrostriatal lesion while a genetic model based on the nigral injection of an adeno-associated viral (AAV) vector coding for the human α-synuclein was used to model a progressive neurodegeneration and dopaminergic neuron dysfunction, thereby replicating conditions closer to early pathological stages of PD. MRS measurements in the striatum of the 6-OHDA rats revealed significant decreases in glutamate and N-acetyl-aspartate levels and a significant increase in GABA level in the ipsilateral hemisphere compared with the contralateral one, while the αSyn overexpressing rats showed a significant increase in the GABA striatal level only. Therefore, we conclude that MRS measurements of striatal GABA levels could allow for the detection of early nigrostriatal defects prior to outright neurodegeneration and, as such, offers great potential as a sensitive biomarker of presymptomatic PD.
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
PURPOSE OF REVIEW: In this review, we will provide the scientific rationale for the use of poxvirus vectors in the field of HIV vaccines, the immunological profile of the vaccine-induced immune responses, an update on the current use of poxvirus vector-based vaccines in HIV vaccine clinical trials, and the development of new modified poxvirus vectors with improved immunological profile. RECENT FINDINGS: An Ad5-HIV vaccine was tested in a phase IIb clinical trial (known as the Step trial). Vaccinations in the Step trial were discontinued because the vaccine did not show any effect on acquisition of infection and on viral load. After the disappointing failure of the Step trial, the field of HIV vaccine has regained enthusiasm and vigour due to the promising protective effect observed in the phase III efficacy trial (known as RV-144) performed in Thailand which has tested a poxvirus-gp120 combination. SUMMARY: The RV-144 phase III has provided for the first time evidence that an HIV vaccine can prevent HIV infection. The results from the RV-144 trial are providing the scientific rationale for the future development of the HIV vaccine field and for designing future efficacy trials.
Resumo:
We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.
Resumo:
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.
Resumo:
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
The main focus of this thesis is to define the field weakening point of permanent magnet synchronous machine with embedded magnets in traction applications. Along with the thesis a modelling program is made to help the designer to define the field weakening point in practical applications. The thesis utilizes the equations based on the current angle. These equations can be derived from the vector diagram of permanent magnet synchronous machine. The design parameters of the machine are: The maximum rotational speed, saliency ratio, maximum induced voltage and characteristic current. The main result of the thesis is finding out the rated rotational speed, from which the field weakening starts. The action of the machine is estimated at a wide speed range and the changes of machine parameters are examined.
Resumo:
Female choice is an important element of sexual selection that may vary among females of the same species. Few researchers have investigated the causes of variation in selectivity with respect to potential mates and overall level of motivation toward a stimulus source representative of a mate. This study demonstrates that female age may be one cause of variation in female choice. Females of different ages may have different mate preferences. As females age, they have less time left to reproduce, and their residual reproductive value decreases. This should correspond to a higher reproductive effort which may be represented as increased motivation and/or decreased selectivity. The effect of age on mate choice in Gryllus integer was investigated by using a non-compensating treadmill, called the Kugel, to measure female phonotaxis. Artificially generated male calling songs of varying pulse rates were broadcast in either a singlestimulus or a three-stimulus experimental design. The pulse rates used in the calling song stimuli were 70, 64, 76, 55 and 85 pulses per second. These corresponded to the documented mean pulse rate for the species at the experimental temperature, one standard deviation below and above the mean, and 2.5 standard deviations below and above the mean, respectively. Test females were either 11-14 days or 25-28 days post-ecdysis. Trials usually were conducted two to seven hours into the scotophase. In the single-stimulus experiment, females were presented with stimuli with only one pulse rate. Older females achieved higher vector scores than younger females, indicating that older females are more motivated to mate. Both groups showed little phonotactic response towards 55 or 85 pIs, both of which lie outside the natural range of G. integer calling song at the experimental temperature. Neither group discriminated among the three pulse rates that fell within the natural range of calling song. In the three-stimulus experiment, females were presented with stimuli with one of three pulse rates, 64, 70 or 76 pIs, In alternation. Both age groups had reduced responsiveness in this experiment, perhaps due to an increase in perceived male density. Additionally, younger females responded significantly more to 64 and 70 pIs than to the higher pulse rate, indicating that they are selective with respect to mate choice. Older females did not discriminate among the three pulse rates. Therefore, it was concluded that selectivity decreases with age. A further study was conducted to determine that these effects were due to age and not due to the differing periods without a mating between the two age groups. Again, stimuli were presented in a three-stimulus experimental design. Age was held constant at 28 days and time since last mating varied from 11 to 25 days. Females varyIng in time since last mating did not differ in their responses to the calling song pulse rates. This indicated that the increased motivation and decreased selectivity exhibited In the initial experiments were due to age and not to time without a mating. Neither time of trial nor female weight had an effect upon female phonotaxis. Data are discussed in terms of mate choice, residual reproductive value, and costs of choice.
Resumo:
Female crickets respond selectively to variations in species-specific male calling songs. This selectivity has been shown to be age-dependent; older females are less choosy. However, female quality should also affect female selectivity. The effect of female quality on mate choice was examined in Gryllus integer by comparing the phonotactic responses of females on different diets and with different parasite loads to various synthetic models of conspecific calling song. Test females were virgin, 11-14 days old, and had been maintained on one of five diets varying in protein and fat content. Phonotaxis was quantified using a non-compensating Kugel treadmill which generates vector scores incorporating the speed and direction of movement of each female. Test females were presented with four calling song models which differed in pulse rate, but were still within the natural range of the species for the experimental temperature. After testing, females were dissected and the number of gregarine parasites within the digestive tract counted. There were no significant effects of either diet or parasitism on female motivation to mate although the combined effects of these variables seem to have an effect with no apparent trend. Control females did not discriminate among song types, but there was a trend of female preferences for lower pulse rates which are closest to the mean pulse rate for the species. Heavily parasitized females did not discriminate among pulse rates altho~gh there was a similar trend of high vector scores for low pulse rates. Diet, however, affected selectivity with poorly-fed females showing significantly high vector scores for pulse rates near the species mean. Such findings raise interesting questions about energy allocation and costs and risks of phonotaxis and mate choice in acoustic Orthoptera. These results are discussed in terms of sexual selection and female mate choice.
Resumo:
In this paper we report the preparation and dielectric properties of poly o-toluidine:poly vinyl chloride composites in pellet and film forms. The composites were prepared using ammonium persulfate initiator and HCl dopant. The characterization is done by TGA and DSC. The dielectric properties including dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, absorption coefficient, and penetration depth were studied in the microwave field. An HP8510 vector network analyzer with rectangular cavity resonator was used for the study. Sbands (2-4 GHz), C band (5-8 GHz), and X band (8-12 GHz) frequencies were used in the microwave field. Comparisons between the pellet and film forms of composites were also included. The result shows that the dielectric properties in the microwave field are dependent on the frequency and on the method of preparation.
Resumo:
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we propose a new analytic framework for understanding integration within cortical neuronal receptive fields. Based on the synaptic organization of cortex, we argue that neuronal integration is a systems--level process better studied in terms of local cortical circuitry than at the level of single neurons, and we present a method for constructing self-contained modules which capture (nonlinear) local circuit interactions. In this framework, receptive field elements naturally have dual (rather than the traditional unitary influence since they drive both excitatory and inhibitory cortical neurons. This vector-based analysis, in contrast to scalarsapproaches, greatly simplifies integration by permitting linear summation of inputs from both "classical" and "extraclassical" receptive field regions. We illustrate this by explaining two complex visual cortical phenomena, which are incompatible with scalar notions of neuronal integration.
Resumo:
We derive a new representation for a function as a linear combination of local correlation kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity principles and Support Vector Machines. We first review previous results for the approximation of a function from discrete data (Girosi, 1998) in the context of Vapnik"s feature space and dual representation (Vapnik, 1995). We apply them to show 1) that a standard regularization functional with a stabilizer defined in terms of the correlation function induces a regression function in the span of the feature space of classical Principal Components and 2) that there exist a dual representations of the regression function in terms of a regularization network with a kernel equal to a generalized correlation function. We then describe the main observation of the paper: the dual representation in terms of the correlation function can be sparsified using the Support Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998). In addition to extending the close relations between regularization, Support Vector Machines and sparsity, our work also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss the relation between our results, which are about regression, and the different problem of pattern classification.