988 resultados para Data disk drives
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
We introduce K-tree in an information retrieval context. It is an efficient approximation of the k-means clustering algorithm. Unlike k-means it forms a hierarchy of clusters. It has been extended to address issues with sparse representations. We compare performance and quality to CLUTO using document collections. The K-tree has a low time complexity that is suitable for large document collections. This tree structure allows for efficient disk based implementations where space requirements exceed that of main memory.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
Qualitative research methods require transparency to ensure the ‘trustworthiness’ of the data analysis. The intricate processes of organizing, coding and analyzing the data are often rendered invisible in the presentation of the research findings, which requires a ‘leap of faith’ for the reader. Computer assisted data analysis software can be used to make the research process more transparent, without sacrificing rich, interpretive analysis by the researcher. This article describes in detail how one software package was used in a poststructural study to link and code multiple forms of data to four research questions for fine-grained analysis. This description will be useful for researchers seeking to use qualitative data analysis software as an analytic tool.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This project, as part of a broader Sustainable Sub-divisions research agenda, addresses the role of natural ventilation in reducing the use of energy required to cool dwellings
Resumo:
In the case of industrial relations research, particularly that which sets out to examine practices within workplaces, the best way to study this real-life context is to work for the organisation. Studies conducted by researchers working within the organisation comprise some of the (broad) field’s classic research (cf. Roy, 1954; Burawoy, 1979). Participant and non-participant ethnographic research provides an opportunity to investigate workplace behaviour beyond the scope of questionnaires and interviews. However, we suggest that the data collected outside a workplace can be just as important as the data collected inside the organisation’s walls. In recent years the introduction of anti-smoking legislation in Australia has meant that people who smoke cigarettes are no longer allowed to do so inside buildings. Not only are smokers forced outside to engage in their habit, but they have to smoke prescribed distances from doorways, or in some workplaces outside the property line. This chapter considers the importance of cigarette-smoking employees in ethnographic research. Through data collected across three separate research projects, the chapter argues that smokers, as social outcasts in the workplace, can provide a wealth of important research data. We suggest that smokers also appear more likely to provide stories that contradict the ‘management’ or ‘organisational’ position. Thus, within the haze of smoke, researchers can uncover a level of discontent with the ‘corporate line’ presented inside the workplace. There are several aspects to the increased propensity of smokers to provide a contradictory or discontented story. It may be that the researcher is better able to establish a rapport with smokers, as there is a removal of the artificial wall a researcher presents as an outsider. It may also be that a research location physically outside the boundaries of the organisation provides workers with the freedom to express their discontent. The authors offer no definitive answers; rather, this chapter is intended to extend our knowledge of workplace research through highlighting the methodological value in using smokers as research subjects. We present the experience of three separate case studies where interactions with cigarette smokers have provided either important organisational data or alternatively a means of entering what Cunnison (1966) referred to as the ‘gossip circle’. The final section of the chapter draws on the evidence to demonstrate how the community of smokers, as social outcasts, are valuable in investigating workplace issues. For researchers and practitioners, these social outcasts may very well prove to be an important barometer of employee attitudes; attitudes that perhaps cannot be measured through traditional staff surveys.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source. In the initial software, no attempt was made to choose between the results offered or construct a case for retention in the casebase. In this phase of the project, alternative data mining techniques will be explored and evaluated. A process for selecting a unique service life prediction for each query will also be investigated. This report summarises the initial evaluation of several data mining techniques.
Resumo:
A survey of a number of schools in a number of different climates was carried out to determine the condition of building components of interest in the project. Schools in Melbourne, the Victorian Surf Coast, Brisbane, Townsville and the Sunshine Coast were inspected. A rating system was devised to categorise the components and the results collated in tables. Analysis of the data (where sufficient examples permitted) resulted in formulae to predict the service of the components and a database was derived.
Resumo:
This project report presents the results of a study on wireless communication data transfer rates for a mobile device running a custombuilt construction defect reporting application. The study measured the time taken to transmit data about a construction defect, which included digital imagery and text, in order to assess the feasibility of transferring various types and sizes of data and the ICT-supported construction management applications that could be developed as a consequence. Data transfer rates over GPRS through the Telstra network and WiFi over a private network were compared. Based on the data size and data transfer time, the rate of transfer was calculated to determine the actual data transmission speeds at which the information was being sent using the wireless mobile communication protocols. The report finds that the transmission speeds vary considerably when using GPRS and can be significantly slower than what is advertised by mobile network providers. While WiFi is much faster than GPRS, the limited range of WiFi limits the protocol to residential-scale construction sites.