991 resultados para DISTRIBUCIÓN VERTICAL DE TREMPERATURA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow and heat transfer characteristics of a second-order fluid over a vertical wedge with buoyancy forces have been analysed. The coupled nonlinear partial differential equations governing the nonsimilar mixed convection flow have been solved numerically using Keller box method. The effects of the buoyancy parameter, viscoelastic parameter, mass transfer parameter, pressure gradient parameter, Prandtl number and viscous dissipation parameter on the skin friction and heat transfer have been examined in detail. Particular cases of the present results match exactly with those available in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of obliquely incident surface water waves against a vertical cliff have been handled in both the cases of water of infinite as well as finite depth by straightforward uses of appropriate Havelock-type expansion theorems. The logarithmic singularity along the shore-line has been incorporated in a direct manner, by suitably representing the Dirac's delta function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonsimilar boundary layer analysis is presented for the problem of free convection in power-law type non-Newtonian fluids along a permeable vertical plate with variable wall temperature or heat flux distribution. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of finding the horizontal pullout capacity of vertical anchors embedded in sands with the inclusion of pseudostatic horizontal earthquake body forces, was tackled in this note. The analysis was carried out using an upper bound limit analysis, with the consideration of two different collapse mechanisms: bilinear and composite logarithmic spiral rupture surfaces. The results are presented in nondimensional form to find the pullout resistance with changes in earthquake acceleration for different combinations of embedment ratio of the anchor (lambda), friction angle of the soil (phi), and the anchor-soil interface wall friction angle (delta). The pullout resistance decreases quite substantially with increases in the magnitude of the earthquake acceleration. For values of delta up to about 0.25-0.5phi, the bilinear and composite logarithmic spiral rupture surfaces gave almost identical answers, whereas for higher values of delta, the choice of the logarithmic spiral provides significantly smaller pullout resistance. The results compare favorably with the existing theoretical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the lack of atmospheric vertical profile data with sufficient accuracy and vertical resolution, the response of the deep atmosphere to passage of monsoon systems over the Bay of Bengal. had not been satisfactorily elucidated. Under the Indian Climate Research Programme, a special observational programme called 'Bay of Bengal Monsoon Experiment' (BOBMEX), was conducted during July-August 1999. The present study is based on the high-resolution radiosondes launched during BOBMEX in the north Bay. Clear changes in the vertical thermal structure of the atmosphere between active and weak phases of convection have been observed. The atmosphere cooled below 6 km height and became warmer between 6 and 13 km height. The warmest layer was located between 8 and 10 km height, and the coldest layer was found just below 5 km height. The largest fluctuations in the humidity field occurred in the mid-troposphere. The observed changes between active and weak phases of convection are compared with the results from an atmospheric general circulation model, which is similar to that used at the National Centre for Medium Range Weather Forecasting, New Delhi. The model is not able to capture realistically some important features of the temperature and humidity profiles in the lower troposphere and in the boundary layer during the active and weak spells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter=9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 108. Under these conditions the convection is turbulent, and the time-averaged velocity at any point is ‘zero’. The Reynolds number based on the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6–7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are much higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection for similar density differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this note, a simplified procedure based on energy consideration, has been developed, for the solution of steady-state vibration of a system with combined viscous and Coulomb friction damping, subjected to frequency in dependent and frequency dependent excitation, which yields results essentially same as the exact solution. The proposed method uses results essentially same as the exact solution. The proposed method uses equivalent damping which assumes that if the damping in a system is small, the total damping effect can be represented by that of an equivalent damper.

Relevância:

20.00% 20.00%

Publicador: