876 resultados para DIRECTIONAL COUPLER
Resumo:
The Bi-directional Evolutionary Structural Optimisation (BESO) method is a numerical topology optimisation method developed for use in finite element analysis. This paper presents a particular application of the BESO method to optimise the energy absorbing capability of metallic structures. The optimisation objective is to evolve a structural geometry of minimum mass while ensuring that the kinetic energy of an impacting projectile is reduced to a level which prevents perforation. Individual elements in a finite element mesh are deleted when a prescribed damage criterion is exceeded. An energy absorbing structure subjected to projectile impact will fail once the level of damage results in a critical perforation size. It is therefore necessary to constrain an optimisation algorithm from producing such candidate solutions. An algorithm to detect perforation was implemented within a BESO framework which incorporated a ductile material damage model.
Synthesis of Directional Modulation Arrays for Circular Polarization Transmission (Best Paper Award)
Resumo:
The influence of oscillatory versus unidirectional flow on the growth and nitrate-uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate-uptake rates were significantly influenced by water motion and season. Lowest nitrate-uptake rates were observed for velocities <5 cm · s−1 and nitrate-uptake rates increased by 20%–50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate-uptake rates. However, while increased nitrate-uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate-uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field-based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.
Resumo:
Unlike the mathematical techniques adopted in classical cryptographic technology at higher protocol layers, it is shown that characteristics intrinsic to the physical layer can be exploited to secure useful information. It is shown that a retrodirective array can be made to operate more securely by incorporating directional modulation (DM) concepts. The presented new approach allows DM to operate in a multipath environment. Previously, DM systems could only operate in free space.
Resumo:
In this study, a far-field power pattern separation approach is proposed for the synthesis of directional modulation (DM) transmitter arrays. Separation into information patterns and interference patterns is enabled by far-field pattern null steering. Compared with other DM synthesis methods, for example, bit error rate-driven DM optimisation and orthogonal vector injection, the approach developed in this study facilitates manipulation of artificial interference spatial distributions. With such capability more interference power can be projected into those spatial directions most vulnerable to eavesdropping, that is, the information side lobes. In such a fashion, information leaked through radiation side lobes can be effectively mitigated in a transmitter power efficient manner. Furthermore, for the first time, the authors demonstrate how multi-beam DM transmitters can be synthesised via this approach.
Resumo:
An iterative pattern synthesis approach for directional modulation (DM) transmitters is presented in this study. Unlike all previous work, this study offers the first discussion on constraining DM transmitter far-field radiation patterns so that energy is primarily concentrated in the spatial direction where low bit error rate is to be achieved, while interference projected along other directions is reduced.
Resumo:
Unlike the mathematical encryption and decryption adopted in the classical cryptographic technology at the higher protocol layers, it is shown that characteristics intrinsic to the physical layer, such as wireless channel propagation, can be exploited to lock useful information. This information then can be automatically unlocked using real time analog RF means. In this paper retrodirective array, RDA, technology for spatial encryption in the multipath environment is for the first time combined with the directional modulation, DM, method normally associated with free space secure physical layer communications. We show that the RDA can be made to operate more securely by borrowing DM concepts and that the DM enhanced RDA arrangement is suitable for use in a multipath environment.
Resumo:
An orthogonal vector approach is proposed for the synthesis of multi-beam directional modulation (DM) transmitters. These systems have the capability of concurrently projecting independent data streams into different specified spatial directions while simultaneously distorting signal constellations in all other directions. Simulated bit error rate (BER) spatial distributions are presented for various multi-beam system configurations in order to illustrate representative examples of physical layer security performance enhancement that can be achieved.
Resumo:
A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.
Resumo:
A digital directional modulation (DM) transmitter structure is proposed from a practical implementation point of view in this paper. This digital DM architecture is built with the help of several off-the-shelf physical layer wireless experiment platform hardware boards. When compared with previous analogue DM transmitter architectures, the digital means offers more precise and fast control on the updates of the array excitations. More importantly, it is an ideal physical arrangement to implement the most universal DM synthesis algorithm, i.e., the orthogonal vector approach. The practical issues in digital DM system calibrations are described and solved. The bit error rates (BERs) are measured via real-time data transmissions to illustrate the DM advantages, in terms of secrecy performance, over conventional non-DM beam-steering transmitters.
Resumo:
Directional modulation (DM) is an emerging technology for securing wireless communications at the physical layer. This promising technology, unlike the conventional key-based cryptographic methods and the key-based physical layer security approaches, locks information signals without any requirements of keys. The locked information can only be fully recovered by the legitimate receiver(s) priory known by DM transmitters. This paper reviews the origin of the DM concept and, particularly, its development in recent years, including its mathematical model, assessment metrics, synthesis approaches, physical realizations, and finally its potential aspects for future studies.
Resumo:
By identifying the similarities and differences between multiple-input and multiple-output (MIMO) and directional modulation (DM) technologies, a new approach for the synthesis of DM transmitters is proposed in this paper. The synthesis method is validated using DM simulation examples, in free space and in a simplified multipath environment, using bit error rate (BER) as the performance metric.
Resumo:
Directional modulation (DM), as a promising physical-layer security technique, is able to secure wireless communications by virtue of the property of its direction-dependent signal modulation format transmission. Here modulated signal waveform signatures can only be detected by legitimate receiver(s) positioned along a-prior assigned directions. This paper reviews the development in DM technology over recent years, and provides some recommendations for future studies.
Resumo:
In this paper a far-field power pattern separation approach is proposed for the synthesis of directional modulation (DM) transmitter arrays. Separation into information pattern and interference patterns is enabled by far-field pattern null steering. Compared with other DM synthesis methods, e.g., BER-driven DM optimization and orthogonal vector injection, this approach facilitates manipulation of artificial interference spatial distributions. With such capability more interference power can be projected into those most vulnerable to eavesdropping spatial directions in free space, i.e., the information sidelobes. In such a fashion information leaked through radiation sidelobes can be effectively mitigated in a transmitter power efficient manner. The proposed synthesis approach is further validated via bit error rate (BER) simulations.