524 resultados para DIPOLAR DENDRONS
Resumo:
Two polycationic lipophilic-core carbohydrate-based dendrons 2a-b and five polycationic lipophilic-core peptide dendrons 3-6, containing four arginine or lysine terminal residues, were synthesized and then tested in rats as penetration enhancers for the oral delivery of low molecular weight heparin. Better results were obtained with dendrons containing terminal lysine residues than terminal arginine. A significant anti-factor Xa activity was obtained when low molecular weight heparin was coadministered with dendron 5. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bistability and hysteresis of magnetohydrodynamic dipolar dynamos generated by turbulent convection in rotating spherical fluid shells is demonstrated. Hysteresis appears as a transition between two distinct regimes of dipolar dynamos with rather different properties including a pronounced difference in the amplitude of the axisymmetric poloidal field component and in the form of the differential rotation. The bistability occurs from the onset of dynamo action up to about 9 times the critical value of the Rayleigh number for onset of convection and over a wide range of values of the ordinary and the magnetic Prandtl numbers including the value unity. Copyright © EPLA, 2009.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.
Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.
Resumo:
Many therapeutically relevant protein-protein interactions contain hot-spot regions on secondary structural elements, which contribute disproportionately to binding enthalpy. Mimicry of such α-helical regions has met with considerable success, however the analogous approach for the β-strand has received less attention. Presented herein is a foldamer for strand mimicry in which dipolar repulsion is a central determinant of conformation. Computation as well as solution- and solid-phase data are consistent with an ensemble weighted almost exclusively in favor of the desired conformation.
Resumo:
Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the “magic-angle” dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues.
Resumo:
A series of new spin-labeled porphyrin containing isoindoline nitroxide moieties were synthesized and characterized as potential free radical fluorescence sensors. Fluorescence-suppression was observed in the free-base monoradical porphyrins, whilst the free-base biradical porphyrins exhibited highly suppressed fluorescence about three times greater than the monoradical porphyrins. The observed fluorescence-suppression was attributed to enhanced intersystem crossing resulting from electronexchange between the doublet nitroxide and the excited porphyrin fluorophore. Notably, fluorescencesuppression was not as strong in the related metalated porphyrins, possibly due to insufficient spin coupling between the nitroxide and the porphyrin. Continuous wave EPR spectroscopy of the diradical porphyrins in fluid solution suggests that the nitroxyl-nitroxyl interspin distance is long enough and tumbling is fast enough not to detect dipolar coupling.
Resumo:
Novel profluorescent nitroxides bearing a triazole linker between the coumarin fluorophore and an isoindoline nitroxide were prepared in good yields using the coppercatalyzed azide�alkyne 1,3-dipolar cycloaddition reaction (CuAAC). Nitroxides containing 7-hydroxy and 7-diethylamino substitution on their coumarin rings displayed significant fluorescence suppression, and upon reaction with methyl radicals, normal fluorescence emission was returned. The fluorescence emission for the 7-hydroxycoumarin nitroxide and its diamagnetic analogue was found to be strongly influenced by pH with maximal fluorescence emission achieved in basic solution. Solvent polarity was also shown to affect fluorescence emission. The significant difference in fluorescence output between the nitroxides and their corresponding diamagnetic analogues makes these compounds ideal tools for monitoring processes involving free-radical species.
Resumo:
Stimulated by the efficacy of copper (I) catalysed Huisgen-type 1,3-dipolar cycloaddition of terminal alkynes and organic azides to generate 1,4-disubstituted 1,2,3-triazole derivatives, the importance of ‘click’ chemistry in the synthesis of organic and biological molecular systems is ever increasing.[1] The mild reaction conditions have also led to this reaction gaining favour in the construction of interlocked molecular architectures.[2-4] In the majority of cases however, the triazole group simply serves as a covalent linkage with no function in the resulting organic molecular framework. More recently a renewed interest has been shown in the transition metal coordination chemistry of triazole ligands.[3, 5, 6] In addition novel aryl macrocyclic and acyclic triazole based oligomers have been shown to recognise halide anions via cooperative triazole C5-H….anion hydrogen bonds.[7] In light of this it is surprising the potential anion binding affinity of the positively charged triazolium motif has not, with one notable exception,[8] been investigated. With the objective of manipulating the unique topological cavities of mechanically bonded molecules for anion recognition purposes, we have developed general methods of using anions to template the formation of interpenetrated and interlocked structures.[9-13] Herein we report the first examples of exploiting the 1,2,3-triazolium group in the anion templated formation of pseudorotaxane and rotaxane assemblies. In an unprecedented discovery the bromide anion is shown to be a superior templating reagent to chloride in the synthesis of a novel triazolium axle containing [2]rotaxane. Furthermore the resulting rotaxane interlocked host system exhibits the rare selectivity preference for bromide over chloride...
Resumo:
The nitrile imine-mediated tetrazole-ene cycloaddition reaction (NITEC) is introduced as a powerful and versatile conjugation tool to covalently ligate macromolecules onto variable (bio)surfaces. The NITEC approach is initiated by UV irradiation and proceeds rapidly at ambient temperature yielding a highly fluorescent linkage. Initially, the formation of block copolymers by the NITEC methodology is studied to evidence its efficacy as a macromolecular conjugation tool. The grafting of polymers onto inorganic (silicon) and bioorganic (cellulose) surfaces is subsequently carried out employing the optimized reaction conditions obtained from the macromolecular ligation experiments and evidenced by surface characterization techniques, including X-ray photoelectron spectroscopy and FT-IR microscopy. In addition, the patterned immobilization of variable polymer chains onto profluorescent cellulose is achieved through a simple masking process during the irradiation. Photoinduced nitrile imine-alkene 1,3-dipolar cycloaddition (NITEC) is employed to covalently bind well-defined polymers onto silicon oxide or cellulose. A diaryl tetrazole-functionalized molecule is grafted via silanization or amidification, respectively. Under UV light, a reactive nitrile imine rapidly forms and reacts with maleimide-functionalized polymers yielding a fluorescent linkage. Via a masking method, polymeric fluorescent patterns are achieved.
Resumo:
In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.
Resumo:
An investigation on hydrogen and methane sensing performance of hydrothermally formed niobium tungsten oxide nanorods employed in a Schottky diode structure is presented herein. By implementing tungsten into the surface of the niobium lattice, we create Nb5+ and W5+ oxide states and an abundant number of surface traps, which can collect and hold the adsorbate charge to reinforce a greater bending of the energy bands at the metal/oxide interface. We show experimentally, that extremely large voltage shifts can be achieved by these nanorods under exposure to gas at both room and high temperatures and attribute this to the strong accumulation of the dipolar charges at the interface via the surface traps. Thus, our results demonstrate that niobium tungsten oxide nanorods can be implemented for gas sensing applications, showing ultra-high sensitivities.