998 resultados para DEPENDENT PEROXIDASE
Resumo:
Factor and cluster analysis are used to identify different methods that public sector agencies in Europeuse to innovate, based on data from a 2010 survey of 3273 agencies. The analyses identify three types ofinnovative agencies: bottom-up, knowledge-scanning, and policy-dependent. The distribution of bottom-up agencies across European countries is positively correlated with average per capita incomes while thedistribution of knowledge-scanning agencies is negatively correlated with income. In contrast, there isno consistent pattern by country in the distribution of policy-dependent agencies. Regression resultsthat control for agency characteristics find that innovation methods are significantly correlated with thebeneficial outcomes of innovation, with bottom-up and knowledge-scanning agencies out-performingpolicy-dependent agencies.
Resumo:
Origin-Destination matrices (ODM) estimation can benefits of the availability of sample trajectories which can be measured thanks to recent technologies. This paper focus on the case of transport networks where traffic counts are measured by magnetic loops and sample trajectories available. An example of such network is the city of Brisbane, where Bluetooth detectors are now operating. This additional data source is used to extend the classical ODM estimation to a link-specific ODM (LODM) one using a convex optimisation resolution that incorporates networks constraints as well. The proposed algorithm is assessed on a simulated network.
Resumo:
A unique bias-dependent phenomenon in CH3NH3PbI3−xClx based planar perovskite solar cells has been demonstrated, in which the photovoltaic parameters derived from the current–voltage (I–V) curves are highly dependent on the initial positive bias of the I–V measurement. In FTO/CH3NH3PbI3−xClx/Au devices, the open-circuit voltage and short-circuit current increased by ca. 337.5% and 281.9% respectively, by simply increasing the initial bias from 0.5 V to 2.5 V.
Resumo:
Organic solvents are commonly used in ink precursors of Cu2ZnSnS4 (CZTS) nanocrystals to make thin films for applications such as solar cells. However, the traces of carbon residual left behind by the organic solvents after high-temperature annealing is generally considered to restrict the growth of nanocrystals to form large grains. This work reported the first systematic study on the influence of carbon content of organic solvents on the grain growth of CZTS nanomaterial during high temperature sulfurization annealing. Solvents with carbon atom per molecule varying from 3 to 10 were used to made ink of CZTS nanocrystals for thin film deposition. It has been found that, after high temperature sulfurization annealing, a bilayer structure was formed in the CZTS film using organic solvent containing 3 carbon atoms per solvent molecule based on glycerol and 1,3-propanediol. The top layer consisted of closelypacked large grains and the bottom layer was made of as-synthesized nanoparticles. In contrast, the CZTS film made with the solvent molecule with more carbon atoms including 1,5-pentanediol (5 carbon atoms) and 1,7-heptanediol (7 carbon atoms) consisted of nanoparticles embedded with large crystals. It is believed that the carbon residues left behind by the organic solvents affected the necking of CZTS nanocrystals to form large grains through influencing the surface property of nanocrystals. Furthermore, it has also been observed that the solvent affected the thickness of MoS2 layer which was formed between CZTS and Mo substrate. A thinner MoS2 film (50 nm) was obtained with the slurry using carbon-rich terpineol as solvent whereas the thickest MoS2 (350 nm) was obtained with the film made from 1,3-propanediol based solvent. The evaluation of the photoactivity of the CZTS thin films has demonstrated that a higher photocurrent was generated with the film containing more large grains.
Resumo:
Oxygen flux between aquatic ecosystems and the water column is a measure of ecosystem metabolism. However, the oxygen flux varies during the day in a “hysteretic” pattern: there is higher net oxygen production at a given irradiance in the morning than in the afternoon. In this study, we investigated the mechanism responsible for the hysteresis in oxygen flux by measuring the daily pattern of oxygen flux, light, and temperature in a seagrass ecosystem (Zostera muelleri in Swansea Shoals, Australia) at three depths. We hypothesised that the oxygen flux pattern could be due to diel variations in either gross primary production or respiration in response to light history or temperature. Hysteresis in oxygen flux was clearly observed at all three depths. We compared this data to mathematical models, and found that the modification of ecosystem respiration by light history is the best explanation for the hysteresis in oxygen flux. Light history-dependent respiration might be due to diel variations in seagrass respiration or the dependence of bacterial production on dissolved organic carbon exudates. Our results indicate that the daily variation in respiration rate may be as important as the daily changes of photosynthetic characteristics in determining the metabolic status of aquatic ecosystems.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.
Resumo:
Solid–interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10−4/s) to moderately high (10−2/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p<0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5×10−3/s (p=0.179). However, at strain-rate of 10−2/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p<0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues.
Resumo:
Vibrational relaxation measurements on the CO asymmetric stretching mode (similar to 1980 cm(-1)) of tungsten hexacarbonyl (W(CO)(6)) as a function of temperature at constant density in several supercritical solvents in the vicinity of the critical point are presented. In supercritical ethane, at the critical density, there is a region above the critical temperature (Tc) in which the lifetime increases with increasing temperature. When the temperature is raised sufficiently (similar to T-c + 70 degrees C), the lifetime decreases with further increase in temperature. A recent hydrodynamic/thermodynamic theory of vibrational relaxation in supercritical fluids reproduces this behavior semiquantitatively. The temperature dependent data for fixed densities somewhat above and below the critical density is in better agreement with the theory. In fluoroform solvent at the critical density, the vibrational lifetime also initially increases with increasing temperature. However, in supercritical CO2 at the critical density, the temperature dependent vibrational lifetime decreases approximately linearly with temperature beginning almost immediately above T-c. The theory does not reproduce this behavior. A comparison between the absolute lifetimes in the three solvents and the temperature trends is made.
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
Transcription of tRNA genes by RNA polymerase III is controlled by the internal conserved sequences within the coding region and the immediate upstream flanking sequences. A highly transcribed copy of glycyl tRNA gene tRNA1(Gly)-1 from Bombyx mori is down regulated by sequences located much farther upstream in the region -150 to -300 nucleotides (nt), with respect to the +1 nt of tRNA. The negative regulatory effect has been narrowed down to a sequence motif 'TATATAA', a perfect consensus recognised by the TATA binding protein, TBP. This sequence element, when brought closer to the transcription start point, on the other hand, exerts a positive effect by promoting transcription of the gene devoid of other cis regulatory elements. The identity of the nuclear protein interacting with this 'TATATAA' element to TBP has been established by antibody and mutagenesis studies. The 'TATATAA' element thus influences the transcription of tRNA genes positively or negatively in a position-dependent manner either by recruitment or sequestration of TBP from the transcription machinery.
Resumo:
When freshly starved amoebae of Dictyostelium discoideum are loaded with the Ca2+-specific dye indo-1/AM and analyzed in a fluorescence-activated cell sorter, they exhibit a quasi-bimodal distribution of fluorescence. This permits a separation of the population into two classes: H, or ''high Ca2+-indo-1 fluorescence,'' and L, or ''low Ca2+-indo-1 fluorescence.'' Simultaneous monitoring of Ca2+-indo-1 and Ca2+-chlortetracycline fluorescence shows that by and large the same cells tend to have high (or low) levels of both cytoplasmic and sequestered Ca2+. Next we label H cells with tetramethylrhodamine isothiocyanate (TRITC) and mix them in a 1:4 ratio with L cells, In the slugs that result, TRITC fluorescence is confined mainly to the anterior prestalk region. This implies that amoebae with relatively high Ca2+ at the vegetative stage tend to develop into prestalk cells and those with low Ca2+ into prespores. Polysphondylium violaceum, a cellular slime mold that does not possess prestalk and prespore cells, also does not display a Ca2+-dependent heterogeneity at the vegetative stage or in slugs. Finally, confirming earlier findings with the fluorophore fura-2 (Azhar ef al., Curr. Sci. 68, 337-342 (1995)), a prestalk-prespore difference in cellular Ca2+ is present in the cells of the slug in vivo. These findings are discussed in light of the possible roles of Ca2+ for cell differentiation in D. discoideum.
Resumo:
Self-organized Bi lines that are only 1.5 nm wide can be grown without kinks or breaks on Si(0 0 1) surfaces to lengths of up to 500 nm. Constant-current topographical images of the lines, obtained with the scanning tunneling microscope, have a striking bias dependence. Although the lines appear darker than the Si terraces at biases below ≈∣1.2∣ V, the contrast reverses at biases above ≈∣1.5∣ V. Between these two ranges the lines and terraces are of comparable brightness. It has been suggested that this bias dependence may be due to the presence of a semiconductor-like energy gap within the line. Using ab initio calculations it is demonstrated that the energy gap is too small to explain the experimentally observed bias dependence. Consequently, at this time, there is no compelling explanation for this phenomenon. An alternative explanation is proposed that arises naturally from calculations of the tunneling current, using the Tersoff–Hamann approximation, and an examination of the electronic structure of the line.
Resumo:
Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.