997 resultados para DELTA-9-THC
Resumo:
Oxygen isotopic compositions of the tests of planktonic foraminifera from several Deep Sea Drilling Project sites provide a general picture of low-latitude marine temperatures from Maastrichtian time to the present. Bottom temperatures determined from the isotopic compositions of benthonic foraminifera are interpreted as being indicative of high-latitude surface temperatures. Prior to the beginning of middle Miocene time, high- and low-latitude temperatures changed in parallel fashion. Following an apparently small and short-lived drop in temperature near the Tertiary-Cretaceous boundary, temperatures remained warm and relatively constant through Paleocene and early and middle Eocene time; bottom temperatures then were on the order of 12°C. A sharp temperature drop in late Eocene time was followed by a more gradual lowering of temperature, culminating in a late Oligocene high-latitude temperature minimum of about 4°C. A temperature rise through early Miocene time was followed in middle Miocene time by a sudden divergence of high- and low-latitude temperatures: high-latitude temperatures dropped dramatically, perhaps corresponding to the onset of major glaciation in Antarctica, but low-latitude temperatures remained constant or perhaps increased. This uncoupling of high-and low-latitude temperatures is postulated to be related to the establishment of a circum-Antarctic circulation similar to that of today. A further drop in high-latitude temperatures in late Pliocene time probably signaled the onset of a major increase in polar glaciation, including extensive sea-ice formation. Early Miocene, small-amplitude (1 per mil) sympathetic fluctuations in isotopic compositions of planktonic and benthonic foraminifera have been identified. These have a period of several hundred thousand years. Superimposed upon these are much more rapid and smaller fluctuations (0.2 to 0.5 per mil) with a period of about 80000 to 90000 yr. This is similar to the period observed for Pleistocene isotopic temperature fluctuations. In low latitudes, much smaller vertical temperature gradients seem to have existed during Maastrichtian and Paleogene time than exist at present. The absence of a sharply defined thermocline during early Tertiary time is also suggested.
Resumo:
The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.
Resumo:
According to monitoring data gained between 1982-1992, macrobenthos in the Tiksi Bay is characterized by low indices of the total abundance, biomass and taxonomic diversity. 30 macrobenthic species have been recorded in the Tiksi Bay. The bottom biocenoses within the estuarine-arctic water mass consist of widespread eurybiontic boreal-arctic and brackish-water species. The maximal number of species was observed at a depth of 8.5 m. The maximum biomass was recorded on muddy grounds. The studied bottom fauna is characterized by a high population density (from 1160-600 ind/m**2) and low biomass of 15.5-22.4 g/m**2. The predominant benthic animals of the main Lena River channel 4.7 km upstream Stolb Island are Chironomidae, Plecoptera and Oligochaeta. In total, 48 species of macrobenthos were registered here. In spring the average density of macrozoobenthos in the channel is 680, in summer 770, in autumn 720 and in winter 380 ind/m**2, with the average biomass varying between 2.9 g/m**2 in spring, 7.06 in summer, 4.4 in autumn, and 2.6 in winter.