940 resultados para DEEP BRAIN-STIMULATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La dépression est une pathologie grave qui, malgré de multiples stratégies thérapeutiques, demeure résistante chez un tiers des patients. Les techniques de stimulation cérébrale sont devenues une alternative intéressante pour les patients résistants à diverses pharmacothérapies. La stimulation du nerf vague (SNV) a ainsi fait preuve de son efficacité en clinique et a récemment été approuvée comme traitement additif pour la dépression résistante. Cependant, les mécanismes d’action de la SNV en rapport avec la dépression n’ont été que peu étudiés. Cette thèse a donc eu comme premier objectif de caractériser l’impact de la SNV sur les différents systèmes monoaminergiques impliqués dans la pathophysiologie de la dépression, à savoir la sérotonine (5-HT), la noradrénaline (NA) et la dopamine (DA), grâce à l’utilisation de techniques électrophysiologiques et de la microdialyse in vivo chez le rat. Des études précliniques avaient déjà révélé qu’une heure de SNV augmente le taux de décharge des neurones NA du locus coeruleus, et que 14 jours de stimulation sont nécessaires pour observer un effet comparable sur les neurones 5-HT. Notre travail a démontré que la SNV modifie aussi le mode de décharge des neurones NA qui présente davantage de bouffées, influençant ainsi la libération terminale de NA, qui est significativement augmentée dans le cortex préfrontal et l’hippocampe après 14 jours. L’augmentation de la neurotransmission NA s’est également manifestée par une élévation de l’activation tonique des récepteurs postsynaptiques α2-adrénergiques de l’hippocampe. Après lésion des neurones NA, nous avons montré que l’effet de la SNV sur les neurones 5-HT était indirect, et médié par le système NA, via l’activation des récepteurs α1-adrénergiques présents sur les neurones du raphé. Aussi, tel que les antidépresseurs classiques, la SNV augmente l’activation tonique des hétérorécepteurs pyramidaux 5-HT1A, dont on connait le rôle clé dans la réponse thérapeutique aux antidépresseurs. Par ailleurs, nous avons constaté que malgré une diminution de l’activité électrique des neurones DA de l’aire tegmentale ventrale, la SNV induit une augmentation de la DA extracellulaire dans le cortex préfrontal et particulièrement dans le noyau accumbens, lequel joue un rôle important dans les comportements de récompense et l’hédonie. Un deuxième objectif a été de caractériser les paramètres optimaux de SNV agissant sur la dépression, en utilisant comme indicateur le taux de décharge des neurones 5-HT. Des modalités de stimulation moins intenses se sont avérées aussi efficaces que les stimulations standards pour augmenter l’activité électrique des neurones 5-HT. Ces nouveaux paramètres de stimulation pourraient s’avérer bénéfiques en clinique, chez des patients ayant déjà répondu à la SNV. Ils pourraient minimiser les effets secondaires reliés aux périodes de stimulation et améliorer ainsi la qualité de vie des patients. Ainsi, ces travaux de thèse ont caractérisé l’influence de la SNV sur les trois systèmes monoaminergiques, laquelle s’avère en partie distincte de celle des antidépresseurs classiques tout en contribuant à son efficacité en clinique. D’autre part, les modalités de stimulation que nous avons définies seraient intéressantes à tester chez des patients recevant la SNV, car elles devraient contribuer à l’amélioration des bénéfices cliniques de cette thérapie.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Functional neuroimaging studies have shown that specific brain areas are associated with alcohol craving including the dorsolateral prefrontal cortex (DLPFC). We tested whether modulation of DLPFC using transcranial direct current stimulation (tDCS) could alter alcohol craving in patients with alcohol dependence while being exposed to alcohol cues. Methods: We performed a randomized sham-controlled study in which 13 subjects received sham and active bilateral tDCS delivered to DLPFC (anodal left/cathodal right and anodal right/cathodal left). For sham stimulation, the electrodes were placed at the same positions as in active stimulation; however, the stimulator was turned off after 30 s of stimulation. Subjects were presented videos depicting alcohol consumption to increase alcohol craving. Results: Our results showed that both anodal left/cathodal right and anodal right/cathodal left significantly decreased alcohol craving compared to sham stimulation (p < 0.0001). In addition, we found that following treatment, craving could not be further increased by alcohol cues. Conclusions: Our findings showed that tDCS treatment to DLPFC can reduce alcohol craving. These findings extend the results of previous studies using noninvasive brain stimulation to reduce craving in humans. Given the relatively rapid suppressive effect of tDCS and the highly fluctuating nature of alcohol craving, this technique may prove to be a valuable treatment strategy within the clinical setting. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Study aim. - We describe a new neuronavigation-guided technique to target the posterior-superior insula (PSI) using a cooled-double-cone coil for deep cortical stimulation. Introduction. - Despite the analgesic effects brought about by repetitive transcranial magnetic stimulation (TMS) to the primary motor and prefrontal cortices, a significant proportion of patients remain symptomatic. This encouraged the search for new targets that may provide stronger pain relief. There is growing evidence that the posterior insula is implicated in the integration of painful stimuli in different pain syndromes and in homeostatic thermal integration. Methods. - The primary motor cortex representation of the lower leg was used to calculate the motor threshold and thus, estimate the intensity of PSI stimulation. Results. - Seven healthy volunteers were stimulated at 10 Hz to the right PSI and showed subjective changes in cold perception. The technique was safe and well tolerated. Conclusions. - The right posterior-superior insula is worth being considered in future studies as a possible target for rTMS stimulation in chronic pain patients. (c) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low-frequency repetitive transcranial magnetic stimulation (rTMS) of the unaffected hemisphere can enhance function of the paretic hand in patients with mild motor impairment. Effects of low-frequency rTMS to the contralesional motor cortex at an early stage of mild to severe hemiparesis after stroke are unknown. In this pilot, randomized, double-blind clinical trial we compared the effects of low-frequency rTMS or sham rTMS as add-on therapies to outpatient customary rehabilitation, in 30 patients within 5-45 days after ischemic stroke, and mild to severe hand paresis. The primary feasibility outcome was compliance with the interventions. The primary safety outcome was the proportion of intervention-related adverse events. Performance of the paretic hand in the Jebsen-Taylor test and pinch strength were secondary outcomes. Outcomes were assessed at baseline, after ten sessions of treatment administered over 2 weeks and at 1 month after end of treatment. Baseline clinical features were comparable across groups. For the primary feasibility outcome, compliance with treatment was 100% in the active group and 94% in the sham group. There were no serious intervention-related adverse events. There were significant improvements in performance in the Jebsen-Taylor test (mean, 12.3% 1 month after treatment) and pinch force (mean, 0.5 Newtons) in the active group, but not in the sham group. Low-frequency rTMS to the contralesional motor cortex early after stroke is feasible, safe and potentially effective to improve function of the paretic hand, in patients with mild to severe hemiparesis. These promising results will be valuable to design larger randomized clinical trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Visual neglect is a frequent disability in stroke and adversely affects mobility, discharge destination, and length of hospital stay. It is assumed that its severity is enhanced by a released interhemispheric inhibition from the unaffected toward the affected hemisphere. Continuous theta burst transcranial magnetic stimulation (TBS) is a new inhibitory brain stimulation protocol which has the potential to induce behavioral effects outlasting stimulation. We aimed to test whether parietal TBS over the unaffected hemisphere can induce a long-lasting improvement of visual neglect by reducing the interhemispheric inhibition. METHODS: Eleven patients with left-sided visual neglect attributable to right hemispheric stroke were tested in a visual perception task. To evaluate the specificity of the TBS effect, 3 conditions were tested: 2 TBS trains over the left contralesional posterior parietal cortex, 2 trains of sham stimulation over the contralesional posterior parietal cortex, and a control condition without any intervention. To evaluate the lifetime of repeated trains of TBS in 1 session, 4 trains were applied over the contralesional posterior parietal cortex. RESULTS: Two TBS trains significantly increased the number of perceived left visual targets for up to 8 hours as compared to baseline. No significant improvement was found with sham stimulation or in the control condition without any intervention. The application of 4 TBS trains significantly increased the number of perceived left targets up to 32 hours. CONCLUSIONS: The new approach of repeating TBS at the same day may be promising for therapy of neglect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Clinical evidence suggests a link between vestibular dysfunctions and mood disorders. No study has yet investigated mood and affective control during vestibular stimulation in healthy participants. OBJECTIVE: We predicted a modulating effect of caloric vestibular stimulation (CVS) on affective control measured in an affective Go/NoGo task (AGN). METHODS: Thirty-two participants performed an AGN task while they were exposed to cold left or right ear CVS (20 °C) and sham stimulation (37 °C). In each block, either positive or negative pictures (taken from the International Affective Picture System) were defined as targets. Participants had to respond to targets (Go), and withhold responses to distractors (NoGo). RESULTS: The sensitivity index d' (hits - false alarms) was used to measure affective control. Affective control improved during right ear CVS when viewing positive stimuli (P = .005), but decreased during left ear CVS when compared to sham stimulation (P = .009). CVS had a similar effect on positive mood ratings (Positive and Negative Affect Schedule). Positive mood ratings decreased during left ear CVS when compared to sham stimulation, but there was no effect after right ear CVS. DISCUSSION: The results suggest that CVS, depending on side of stimulation, has a modulating effect on mood and affective control. The results complement previous findings in manic patients and provide new evidence for the clinical potential of CVS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purchases are driven by consumers’ product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studying social behavior often requires the simultaneous interaction of many subjects. As yet, however, no painless, noninvasive brain stimulation tool existed that allowed the simultaneous affection of brain processes in many interacting subjects. Here we show that transcranial direct current stimulation (tDCS) can overcome these limits. We apply right prefrontal cathodal tDCS and show that subjects' propensity to punish unfair behavior is reduced significantly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE A case is presented and a systematic review of the literature is provided to update our current knowledge of induction of fear by cortical stimulation. METHODS We present a case of refractory epilepsy associated with a lesion where fear could be induced by intraoperative electrical stimulation of the posterior inner part of the superior temporal gyrus. We performed a systematic review of the literature using PubMed with the key words "epilepsy AND emotion", "cortical stimulation AND emotion," and "human brain stimulation AND behavior". RESULTS Intraoperative cortical stimulation of the inner part of the posterior superior temporal gyrus reliably induced fear and progressive screaming behavior. Stimulation through subdural grid electrodes did not induce this phenomenon. A systematic review of the literature identified fear induction by stimulation of different widespread cortical areas including the temporal pole, the insula, and the anterior cingulate cortex. The posterior part of the superior temporal gyrus has so far not been associated with fear induction after electrical stimulation. CONCLUSION Although our observation suggests that this area of the brain could be part of a network involved in the elicitation of fear, dysfunction of this network induced by epilepsy could also explain the observed phenomenon. Electrophysiologic and imaging studies must be conducted to improve our understanding of the cortical networks forming the neuroanatomical substrate of higher brain functions and experiences such as fear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcranial static magnetic field stimulation (tSMS) in humans reduces cortical excitability. Objective: The objective of this study was to determine if prolonged tSMS (2 h) could be delivered safely in humans. Safety limits for this technique have not been described. Methods: tSMS was applied for 2 h with a cylindric magnet on the occiput of 17 healthy subjects. We assessed tSMS-related safety aspects at tissue level by measuring levels of neuron-specific enolase (NSE,a marker of neuronal damage) and S100 (a marker of glial reactivity and damage). We also included an evaluation of cognitive side effects by using a battery of visuomotor and cognitive tests. Results: tSMS did not induce any significant increase in NSE or S100. No cognitive alteration was detected. Conclusions: Our data indicate that the application of tSMS is safe in healthy human subjects, at least within these parameters

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Making decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.

We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.

Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Open skull surgery of deeply located intracerebral lesions requires precise determination of the treatment area in 3-dimensional (3-D) space. 3-D MRI can give important additional information in presurgical determination of the surgical approach to the target, taking into account highly functional brain areas and important vascular structures. The day before surgery, a grid composed of 9 tubings intersecting at 90° at 1 cm intervals and filled with a Q1SO4 solution is firmly attached to the skin of the patient’s head in the presumed region of the craniotomy. A 3-D turbo-FLASH sequence is then performed in the sagittal plane after intravenous Gd-DOTA injection on a IT Magnetom. 3-D surface reconstruction of the cortical gyri and sulci is performed. Once the gyri are identified, the 3-D program is then implemented in order to perform a color display of the cortical veins and of the tumor boundaries. The surgical access is then chosen by the surgeon, taking into account highly functional areas. Finally, the boundaries of the tumor are projected on the cortex reconstruction and on the external reference placed on the skin. The entry place for surgery as well as the size of craniotomy are drawn on the skin and the tubed grid is removed. The accuracy of this method tested in 9 patients with deeply located brain tumors or arteriovenous malformations was very satisfactory. In daily practice, this method is a valuable technique providing important clinical information in determining the shortest and safest way through the brain tissue, decreasing possible functional deficit and reducing craniotomy size in cases of difficult to access deep brain areas. Our method does not require a stereotactic frame permanently fixed to the head of the patient during surgery. © 1994 S. Karger AG, Basel.