747 resultados para Customer emotion
Resumo:
Airlines have successfully practiced revenue management over the past four decades and enhanced their revenue. Most of the traditional models that are applied assume that customers buying a high-fare class ticket will not purchase a low-fare class ticket even if it is available. This is not a very realistic assumption and has led to revenue leakage due to customers exhibiting buy-down behaviour. This paper aims at devising a suitable incentive mechanism that would incite the customer to reveal his nature. This helps in reducing revenue leakage. We show that the proposed incentive mechanism is profitable to both the buyer and seller and hence ensures the buyers participation in the mechanism. Journal of the Operational Research Society (2011) 62, 1566-1573. doi:10.1057/jors.2010.57 Published online 11 August 2010
Resumo:
Efficacy of commercial wireless networks can be substantially enhanced through large-scale cooperation among involved entities such as providers and customers. The success of such cooperation is contingent upon the design of judicious resource allocation strategies that ensure that the individuals' payoffs are commensurate to the resources they offer to the coalition. The resource allocation strategies depend on which entities are decision-makers and whether and how they share their aggregate payoffs. Initially, we consider the scenario where the providers are the only decision-makers and they do not share their payoffs. We formulate the resource allocation problem as a nontransferable payoff coalitional game and show that there exists a cooperation strategy that leaves no incentive for any subset of providers to split from the grand coalition, i.e., the core of the game is nonempty. To compute this cooperation strategy and the corresponding payoffs, we subsequently relate this game and its core to an exchange market setting and its equilibrium, which can be computed by several efficient algorithms. Next, we investigate cooperation when customers are also decision-makers and decide which provider to subscribe to based on whether there is cooperation. We formulate a coalitional game in this setting and show that it has a nonempty core. Finally, we extend the formulations and results to the cases where the payoffs are vectors and can be shared selectively.
Resumo:
Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.
Resumo:
[EN] Store brands account for and important market share in the Spain and a further increase in expected in the next years due to the downturn. However, there is lack of research on store brand customer-based Brand Equity. This study attempts to propose an integrated model of Brand Equity in store or retailer brands, based on Aaker s well-known conceptual model. We propose a consumer-based model, including the main sources or dimensions of Brand Equity and considering the intention to purchase as a consequence. Based on a sample of 362 consumers and 5 store brands, structural equation modeling is used to test research hypotheses. The results obtained reveal that store brand awareness, loyalty along with store brand perceived quality have a significant influence on consumers intention to purchase store brands. Our study suggests that marketers and marketing managers from retailing companies should carefully consider the Brand Equity components when designing their brand strategies, and develop marketing activities in order to enhance their brands awareness.
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.