956 resultados para Cranial Nonmetric Traits
Resumo:
Explaining how polymorphism is maintained in the face of selection remains a puzzle since selection tends to erode genetic variation. Provided an infinitely large unsubdivided population and no frequency-dependance of selective values, heterozygote advantage is the text book explanation for the maintenance of polymorphism when selection acts at a diallelic locus. Here, we investigate whether this remains true when selection acts at multiple diallelic loci. We use five different definitions of heterozygote advantage that largely cover this concept for multiple loci. Using extensive numerical simulations, we found no clear associations between the presence of any of the five definitions of heterozygote advantage and the maintenance of polymorphism at all loci. The strength of the association decreases as the number of loci increases or as recombination decreases. We conclude that heterozygote advantage cannot be a general mechanism for the maintenance of genetic polymorphism at multiple loci. These findings suggest that a correlation between the number of heterozygote loci and fitness is not warranted on theoretical ground.
Resumo:
Abstract Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.
Resumo:
This analysis is a follow-up to an earlier investigation of 182 genes selected as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN). As those initial case-control results revealed no statistically significant differences in single nucleotide polymorphisms, herein, we investigate alternative phenotypes associated with AN. In 1762 females, using regression analyses, we examined the following: (i) lowest illness-related attained body mass index; (ii) age at menarche; (iii) drive for thinness; (iv) body dissatisfaction; (v) trait anxiety; (vi) concern over mistakes; and (vii) the anticipatory worry and pessimism versus uninhibited optimism subscale of the harm avoidance scale. After controlling for multiple comparisons, no statistically significant results emerged. Although results must be viewed in the context of limitations of statistical power, the approach illustrates a means of potentially identifying genetic variants conferring susceptibility to AN because less complex phenotypes associated with AN are more proximal to the genotype and may be influenced by fewer genes. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.
Resumo:
Oratoire.
Resumo:
This paper discusses the implications of using genetically modified crops to biomanufacture pharmaceuticals and industrial compounds from the perspective of their co-existence with conventional agriculture. Such plant-made pharmaceuticals and plantmade industrial products rely on exciting scientific and technological breakthroughs and promise new opportunities for the agricultural sector, but they also entail novel risks. The management of the externalities and of the possible unintended economic effects that arise in this context is critical and poses difficult questions for regulators.
Resumo:
In species subject to individual and social learning, each individual is likely to express a certain number of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission reaches a steady state in the population, the number of different cultural traits carried by an individual converges to some stationary distribution. We call this the trait-number distribution. In this paper, we derive the trait-number distributions for both individuals and populations when cultural traits are independent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-number distributions approach Poisson distributions so that their means characterize cultural diversity in the population. We then analyse how the mean trait number varies at both the individual and population levels as a function of various demographic features, such as population size and subdivision, and social learning rules, such as conformism and anti-conformism. Diversity at the individual and population levels, as well as at the level of cultural homogeneity within groups, depends critically on the details of population demography and the individual and social learning rules.
Resumo:
Malaria has occurred in the Cabo Verde archipelago with epidemic characteristics since its colonization. Nowadays, it occurs in Santiago Island alone and though prophylaxis is not recommended by the World Health Organization, studies have highlight the prospect of malaria becoming a serious public health problem as a result of the presence of antimalarial drug resistance associated with mutations in the parasite populations and underscore the need for tighter surveillance. Despite the presumptive weak immune status of the population, severe symptoms of malaria are not observed and many people present a subclinical course of the disease. No data on the prevalence of sicklecell trait and red cell glucose-6-phosphate dehydrogenase deficiency (two classical genetic factors associated with resistance to severe malaria) were available for the Cabo Verde archipelago and, therefore, we studied the low morbidity from malaria in relation to the particular genetic characteristics of the human host population. We also included the analysis of the pyruvate kinase deficiency associated gene, reported as putatively associated with resistance to the disease. Allelic frequencies of the polymorphisms examined are closer to European than to African populations and no malaria selection signatures were found. No association was found between the analyzed human factors and infection but one result is of high interest: a linkage disequilibrium test revealed an association of distant loci in the PKLR gene and adjacent regions, only in non-infected individuals. This could mean a more conserved gene region selected in association to protection against the infection and/or the disease.
Resumo:
In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.
Resumo:
AIM: In normal aging, subjective cognitive decline (SCD) might reflect personality traits or affective states rather than objective cognitive decline. However, little is known on the correlates of SCD in mild cognitive impairment (MCI). The present study investigates SCD in MCI patients and healthy older adults, and explores the association of SCD with personality traits, affective states, behavioral and psychological symptoms (BPS), and episodic memory in patients with MCI as compared with healthy older adults. METHODS: A total of 55 patients with MCI and 84 healthy older adults were recruited. Standard instruments were used to evaluate SCD, episodic memory, BPS and affective states. Premorbid and current personality traits were assessed by proxies using the NEO Personality Inventory Revised. RESULTS: Patients with MCI generally reported SCD more often than healthy older adults. SCD was positively associated with depressive symptoms in both groups. With regard to personality, no significant relationship was found in the healthy older group, whereas agreeableness was significantly negatively related to SCD in the MCI group. No significant association was found between SCD and episodic memory. CONCLUSIONS: SCD is more prevalent in patients with MCI than in the healthy elderly, but it does not reflect an objective cognitive impairment. SCD rather echoes depressive symptoms in both patients with MCI and healthy subjects. The negative association of SCD with agreeableness observed in patients with MCI could indicate that MCI patients scoring high on the agreeableness trait would not report SCD in order to prevent their relatives worrying about their increasing cognitive difficulties. Geriatr Gerontol Int 2014; 14: 589-595.
Resumo:
Genomic rearrangements at chromosome 13q31.3q32.1 have been associated with digital anomalies, dysmorphic features, and variable degree of mental disability. Microdeletions leading to haploinsufficiency of miR17∼92, a cluster of micro RNA genes closely linked to GPC5 in both mouse and human genomes, has recently been associated with digital anomalies in the Feingold like syndrome. Here, we report on a boy with familial dominant post-axial polydactyly (PAP) type A, overgrowth, significant facial dysmorphisms and autistic traits who carries the smallest germline microduplication known so far in that region. The microduplication encompasses the whole miR17∼92 cluster and the first 5 exons of GPC5. This report supports the newly recognized role of miR17∼92 gene dosage in digital developmental anomalies, and suggests a possible role of GPC5 in growth regulation and in cognitive development.
Resumo:
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Resumo:
The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.