975 resultados para Covering Radius


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years the Torino Cosmogeophysics group has been studying sediment cores drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) and deposited in the last millennia. The gravity core GT90-3, in which the 18O series was measured, was drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea) at 39°45'53''N, 17°53'33''E. It was extracted at a depth of 178 m and its length is 3.57 m. Thanks to its geographical location, the Gallipoli Terrace is a favourable site for climatic studies based on marine sediments, because of its closeness to the volcanically active Campanian area, a region that is unique in the world for its detailed historical documentation of volcanic eruptions. Tephra layers corresponding to historical eruptions were identified along the cores, thus allowing for accurate dating and determination of the sedimentation rate. The measurements performed in different cores from the same area showed that the sedimentation rate is uniform across the whole Gallipoli Terrace. We measured the oxygen isotope composition d18O of planktonic foraminifera. These measurements provided a high-resolution 2,200-year-long record. We sampled the core using a spacing of 2.5 mm corresponding to 3.87 years. Each sample of sediment (5 g) was soaked in 5% calgon solution overnight, then treated in 10% H2O2 to remove any residual organic material. Subsequently it was washed with a distilled-water jet through a sieve with a 150 µm mesh. The fraction > 150 µm was kept and oven-dried at 5°C. The planktonic foraminifera Globigerinoides ruber were picked out of the samples under a microscope. For each sample, 20-30 specimens were selected from the fraction comprised between 150 µm and 300 µm. The use of a relatively large number of specimens for each sample reduces the isotopic variability of individual organisms, giving a more representative d18O value. The stable isotope measurements were performed using a VG-PRISM mass spectrometer fitted with an automated ISO-CARB preparation device. Analytical precision based on internal standards was better than 0.1 per mil. Calibration of the mass spectrometer to VPDB scale was done using NBS19 and NBS18 carbonate standards. The strategic location of the drilling area makes this record a unique tool for climate and oceanographic studies of the Central Mediterranean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ObjectKineticMonteCarlo models allow for the study of the evolution of the damage created by irradiation to time scales that are comparable to those achieved experimentally. Therefore, the essential ObjectKineticMonteCarlo parameters can be validated through comparison with experiments. However, this validation is not trivial since a large number of parameters is necessary, including migration energies of point defects and their clusters, binding energies of point defects in clusters, as well as the interactionradii. This is particularly cumbersome when describing an alloy, such as the Fe–Cr system, which is of interest for fusion energy applications. In this work we describe an ObjectKineticMonteCarlo model for Fe–Cr alloys in the dilute limit. The parameters used in the model come either from density functional theory calculations or from empirical interatomic potentials. This model is used to reproduce isochronal resistivity recovery experiments of electron irradiateddiluteFe–Cr alloys performed by Abe and Kuramoto. The comparison between the calculated results and the experiments reveal that an important parameter is the capture radius between substitutionalCr and self-interstitialFe atoms. A parametric study is presented on the effect of the capture radius on the simulated recovery curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions for current to a cylindrical Langmuir probe at rest in unmagnetized plasma are compared with results from both steady-state Vlasov and particle-in-cell simulations. Probe bias potentials that are much greater than plasma temperature (assumed equal for ions and electrons), as of interest for bare conductive tethers, are considered. At a very high bias, both the electric potential and the attracted-species density exhibit complex radial profiles; in particular, the density exhibits a minimum well within the plasma sheath and a maximum closer to the probe. Excellent agreement is found between analytical and numerical results for values of the probe radiusR close to the maximum radius Rmax for orbital-motion-limited (OML) collection at a particular bias in the following number of profile features: the values and positions of density minimum and maximum, position of sheath boundary, and value of a radius characterizing the no-space-charge behavior of a potential near the high-bias probe. Good agreement between the theory and simulations is also found for parametric laws jointly covering the following three characteristic R ranges: sheath radius versus probe radius and bias for Rmax; density minimum versus probe bias for Rmax; and (weakly bias-dependent) current drop below the OML value versus the probe radius for R > Rmax.