977 resultados para Covariance matrix estimation
Resumo:
Parent, L. E., Natale, W. and Ziadi, N. 2009. Compositional nutrient diagnosis of corn using the Mahalanobis distance as nutrient imbalance index. Can. J. Soil Sci. 89: 383-390. Compositional nutrient diagnosis (CND) provides a plant nutrient imbalance index (CND - r(2)) with assumed chi(2) distribution. The Mahalanobis distance D(2), which detects outliers in compositional data sets, also has a chi(2) distribution. The objective of this paper was to compare D(2) and CND - r(2) nutrient imbalance indexes in corn (Zea mays L.). We measured grain yield as well as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn concentrations in the ear leaf at silk stage for 210 calibration sites in the St. Lawrence Lowlands [2300-2700 corn thermal units (CTU)] as well as 30 phosphorus (2300-2700 CTU; 10 sites) and 10 nitrogen (1900-2100 CTU; one site) replicated fertilizer treatments for validation. We derived CND norms as mean, standard deviation, and the inverse covariance matrix of centred log ratios (clr) for high yielding specimens (>= 9.0 Mg grain ha(-1) at 150 g H(2)O kg(-1) moisture content) in the 2300-2700 CTU zone. Using chi(2) = 17 (P < 0.05) with nine degrees of freedom (i.e., nine nutrients) as a rejection criterion for outliers and a yield threshold of 8.6 Mg ha(-1) after Cate-Nelson partitioning between low- and high-yielders in the P validation data set, D(2) misclassified two specimens compared with nine for CND -r(2). The D(2) classification was not significantly different from a chi(2) classification (P > 0.05), but the CND - r(2) classification differed significantly from chi(2) or D(2) (P < 0.001). A threshold value for nutrient imbalance could thus be derived probabilistically for conducting D(2) diagnosis, while the CND - r(2) nutrient imbalance threshold must be calibrated using fertilizer trials. In the proposed CND - D(2) procedure, D(2) is first computed to classify the specimen as possible outlier. Thereafter, nutrient indices are ranked in their order of limitation. The D(2) norms appeared less effective in the 1900-2100 CTU zone.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We propose an alternative formalism to simulate cosmic microwave background (CMB) temperature maps in Lambda CDM universes with nontrivial spatial topologies. This formalism avoids the need to explicitly compute the eigenmodes of the Laplacian operator in the spatial sections. Instead, the covariance matrix of the coefficients of the spherical harmonic decomposition of the temperature anisotropies is expressed in terms of the elements of the covering group of the space. We obtain a decomposition of the correlation matrix that isolates the topological contribution to the CMB temperature anisotropies out of the simply connected contribution. A further decomposition of the topological signature of the correlation matrix for an arbitrary topology allows us to compute it in terms of correlation matrices corresponding to simpler topologies, for which closed quadrature formulas might be derived. We also use this decomposition to show that CMB temperature maps of (not too large) multiply connected universes must show patterns of alignment, and propose a method to look for these patterns, thus opening the door to the development of new methods for detecting the topology of our Universe even when the injectivity radius of space is slightly larger than the radius of the last scattering surface. We illustrate all these features with the simplest examples, those of flat homogeneous manifolds, i.e., tori, with special attention given to the cylinder, i.e., T-1 topology.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The T-2 and the generalized variance vertical bar S vertical bar charts are used for monitoring the mean vector and the covariance matrix of multivariate processes. In this article, we propose for bivariate processes the use of the T-2 and the VMAX charts. The points plotted on the VMAX chart correspond to the maximum of the sample variances of the two quality characteristics. The reason to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is the user's familiarity with the computation of simple sample variances; we can't say the same with regard to the computation of the generalized variance vertical bar S vertical bar.
Resumo:
The merit of the Karhunen-Loève transform is well known. Since its basis is the eigenvector set of the covariance matrix, a statistical, not functional, representation of the variance in pattern ensembles is generated. By using the Karhunen-Loève transform coefficients as a natural feature representation of a character image, the eigenvector set can be regarded as an feature extractor for a classifier.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.
Resumo:
The T2 chart and the generalized variance |S| chart are the usual tools for monitoring the mean vector and the covariance matrix of multivariate processes. The main drawback of these charts is the difficulty to obtain and to interpret the values of their monitoring statistics. In this paper, we study control charts for monitoring bivariate processes that only requires the computation of sample means (the ZMAX chart) for monitoring the mean vector, sample variances (the VMAX chart) for monitoring the covariance matrix, or both sample means and sample variances (the MCMAX chart) in the case of the joint control of the mean vector and the covariance matrix.
Resumo:
The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.
Resumo:
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields. © FUNPEC-RP.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)