1000 resultados para Counting >150 µm fraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] The low-latitude upwelling regime off the Mauritanian coast in the subtropical NE Atlantic accounts for a significant part of global export production. Although productivity variations in coastal upwelling areas are usually attributed to changes in wind stress and upwelling intensity, productivity dynamics off Mauritania are less straightforward because of the complex atmospheric and hydrographic setting. Here we integrate micropaleontological (diatoms) and geochemical (bulk biogenic sediment components, X-ray fluorescence, and alkenones) proxies to examine on submillennial-to-millennial changes in diatom production that occurred off Mauritania, NW Africa, for the last 25 ka. During the Last Glacial Maximum (LGM, 19.0-23.0 ka B.P.), moderate silicate content of upwelled waters coupled with weakened NE trade winds determined moderate diatom productivity. No significant cooling is observed during the LGM, suggesting that our alkenone-based SST reconstruction represents a local, upwelling-related signal rather than a global insolation related one. Extraordinary increases in diatom and opal concentrations during Heinrich event 1 (H1, 15.5-18.0 ka B.P.) and the Younger Dryas (YD, 13.5-11.5 ka B.P.) are attributed to enhanced upwelling of silica-rich waters and an enlarged upwelling filament, due to more intense NE trade winds. The synchronous increase of CaCO3 and K intensity and the decreased opal and diatoms values mark the occurrence of the Bølling/Allerød (BA, 13.5-15.5 ka B.P.) due to weakened eolian input and more humid conditions on land. Although the high export of diatoms is inextricably linked to upwelling intensity off Mauritania, variability in the nutrient content of the thermocline also plays a decisive role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacial cooling (~1-5°C) in the eastern equatorial Pacific (EEP) cold tongue is often attributed to increased equatorial upwelling, stronger advection from the Peru-Chile Current (PCC), and to the more remote subpolar southeastern Pacific water mass. However, evidence is scarce for identifying unambiguously which process plays a more important role in driving the large glacial cooling in the EEP. To address this question, here we adopt a faunal calibration approach using planktic foraminifers with a new compilation of coretop data from the eastern Pacific, and present new downcore variation data of fauna assemblage and estimated sea surface temperatures (SSTs) for the past 160 ka (Marine Isotope Stage (MIS) 6) from ODP Site 1240 in the EEP. With significant improvement achieved by adding more coretop data from the eastern boundary current, our downcore calibration results indicate that most of the glacial cooling episodes over the past 160 ka in the EEP are attributable to increased influence from the subpolar water mass from high latitudes of the southern Pacific. By applying this new calibration of the fauna SST transfer function to a latitudinal transect of eastern Pacific (EP) cores, we find that the subpolar water mass has been a major dynamic contributor to EEP cold tongue cooling since MIS 6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-surface temperature (SST) estimates in the sediment core MD01-2390 based on planktonic foraminiferal species abundances using five different transfer function techniques suggest nearly unchanged or unusually higher temperatures in the tropical southern South China Sea (SCS) during the Last Glacial Maximum (LGM) relative to modern temperatures. These results are in contrast to substantial cooling of 2-5 °C inferred by geochemical (Uk'37, Mg/Ca ratios) and terrestrial proxies from the western tropical Pacific region. Using multivariate statistics we show that the glacial southern SCS harboured unique planktonic foraminiferal assemblages that have no modern analogs. Analyses of faunal variation through the core reveal that planktonic foraminiferal assemblages responded to temperature changes inferred from Mg/Ca data but that this signal is subdued by superimposed variations in the relative abundance of Pulleniatina obliquiloculata and Neogloboquadrina pachyderma (dextral). These species occur in glacial samples at proportions that are not observed in the calibration data set. The glacial high abundance of N. pachyderma (dextral) are interpreted to reflect a seasonal (winter) inflow of cold surface water from the northeast via the Bashi Strait due to the combined effects of an intensified winter monsoon, a southward shift of the polar front and the eastward migration of the Kuroshio Current. In contrast, processes controlling the high relative abundances of P. obliquiloculata during the LGM may be unique to the southern SCS. We propose a scenario involving a stronger (winter) mixing or enhanced upwelling due to an intensified winter monsoon that prevented shallow-dwelling, warm indicators to establish larger populations during the LGM. Our results indicate that a no-analog behaviour of planktonic foraminifera faunas is responsible for the warm glacial conditions in this part of the western Pacific warm pool as implied by foraminiferal transfer functions and that a more significant surface cooling in the region as implied by terrestrial and geochemical (Mg/Ca ratios; alkenone unsaturation index) marine proxies is a more likely scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper documents the migration of the Polar Front (PF) over the Iberian margin during some of the cold climatic extremes of the last 45 ka. It is based on a compilation of robust and coherent paleohydrological proxies obtained from eleven cores distributed between 36 and 42°N. Planktonic delta18O (Globigerina bulloides), ice-rafted detritus concentrations, and the relative abundance of the polar foraminifera Neogloboquadrina pachyderma sinistral were used to track the PF position. These three data sets, compared from core to core, show a consistent evolution of the sea surface paleohydrology along the Iberian margin over the last 45 ka. We focused on five time slices representative of cold periods under distinct paleoenvironmental forcings: the 8.2 ka event and the Younger Dryas (two recent cold events occurring within high values of summer insolation), Heinrich events 1 and 4 (reflecting major episodes of massive iceberg discharges into the North Atlantic), and the Last Glacial Maximum (typifying the highest ice volume accumulated in the Northern Hemisphere). For each event, we generated schematic maps mirroring past sea surface hydrological conditions. The maps revealed that the Polar Front presence along the Iberian margin was restricted to Heinrich events. The sea surface conditions during the Last Glacial Maximum were close to those at present day, except for the northern sites which briefly experienced subarctic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The southernmost record of Maestrichtian pelagic carbonate sedimentation was recovered from ODP Leg 113 Holes 689B and 690C, drilled on the Maud Rise in the eastern Weddell Sea sector of the Southern Ocean (65°S). Well preserved and abundant planktonic foraminifers occur throughout Maestrichtian cores from both holes, providing a nearly complete biogeographic and biostratigraphic history of this region. Diversity is low compared to tropical and subtropical assemblages, with a maximum within sample diversity of 16 planktonic foraminifer species and a diversity total for the Maestrichtian of 24 species. The assemblages are dominated throughout by Heterohelix, Globigerinelloides, and a new species of Archaeoglobigerina, whereas keeled taxa are completely absent from the lower Maestrichtian and rare in the middle through upper Maestrichtian sediments. Three planktonic foraminifer species are described as new and are recognized as being endemic to the Austral Province. These include Archaeoglobigerina australis n. sp., Hedbergella sliteri n. sp., and Archaeoglobigerina mateola n. sp. The former two species were previously illustrated in reports on Late Cretaceous foraminifers from the Falkland Plateau and the northern Antarctic Peninsula. Two keeled and five non-keeled planktonic foraminifers, previously not found in high latitude Maestrichtian sediments, first appeared at the Maud Rise during the late early and late Maestrichtian. Correlation with their stratigraphic ranges in low latitude sequences shows that their first appearance datums are considerably younger at the Maud Rise than in the lower latitudes. The most likely explanation for this observation is that there was a warming in the south polar region during the late early and late Maestrichtian and a concomitant poleward migration of stenothermal taxa. However, oxygen isotopic paleotemperature results from Sites 689 and 690 (Barrera and Huber, 1990, doi:10.2973/odp.proc.sr.113.137.1990) show a long-term cooling trend throughout the Maestrichtian, indicating that other factors may have played a more important role than temperature in the distribution of Maestrichtian planktonic foraminifers. A new biostratigraphic scheme is proposed for the Antarctic because of the absence of thermophilic planktonic foraminifers used to identify existing low to middle latitude zones. The Globigerinelloides impensus Partial Range Zone is defined for the late Campanian-Maestrichtian, the Globotruncanita havanensis Partial Range Zone is redefined for the early to late early Maestrichtian, and the Abathomphalus mayaroensis Total Range Zone is recognized. Good quality magnetic polarity data obtained from both Maud Rise sites (Hamilton, 1990, doi:10.2973/odp.proc.sr.113.179.1990) enables magnetobiostratigraphic correlation of twelve foraminifer datums with the geomagnetic polarity time scale of Haq et al. (1987). The geochronology thus obtained is crucial for accurate cross-latitudinal correlation and interpretation of the paleoceanographic history of the Antarctic region during the Maestrichtian time period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydraulic piston coring at DSDP Site 548, on the upper continental slope southwest of Ireland, recovered a nearly complete Pliocene section spanning 103 m of sediment. The sediments are greenish gray carbonate-rich hemipelagites containing abundant nannofossils and foraminifers. Grain-size analysis demonstrates that the texture of the section is fairly constant, with most of the variation occurring in 63- to 32-µm and < 2-µm fractions. Previous research has shown that the middle-to-late Pliocene transition in the North Atlantic was marked by the appearance of the planktonic foraminiferal species Globorotalia inflata and by the first occurrence of significant quantities of ice-rafted sediment grains in deep-sea sediments. The latter is taken to represent the first important development of Northern Hemisphere glaciation. The first appearance of G. inflata is carefully documented for Site 548 and is demonstrated to be an evolutionary datum at this site, rather than an ecologically controlled first appearance. Surface ocean conditions represented in the sediment section spanning the appearance of G. inflata were strongly cyclic, resulting in large periodic changes in the abundances of Globorotalia puncticulata and N. acostaensis. The benthic foraminiferal population was studied in detail over the middle-to-upper Pliocene transition to establish the nature and behavior of the intermediate-depth water mass in the northeastern Atlantic at the time of ice-sheet growth in the Northern Hemisphere. This water mass is presently warm and saline, having its source in the Mediterranean Sea. The benthic data show that the intermediate-depth water mass was undergoing a series of progressive changes over the interval including the first appearance of G. inflata. These changes are particularly reflected in the relative abundances of Globocassidulina subglobosa (Brady), Uvigerina, and Ehrenbergina. Also, the mean size of individuals in the G. subglobosa populations shows systematic variation, indicating changing intermediate-depth water properties. Oxygen-isotope analyses show that the intermediate-depth water mass was cold during the middle-to-late Pliocene transition. This interpretation is supported by the relative abundances of benthic foraminiferal species. Hence, the intermediate-depth northeastern Atlantic water mass of the middle to late Pliocene was considerably different from the intermediate-depth water mass of the present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size-weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size-weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.