999 resultados para Countable Chain Condition
Resumo:
This thesis represents a major step forward in understanding the link between the development of combustion related faults in diesel engines and the generation of acoustic emissions. The findings presented throughout the thesis provide a foundation so that future diesel engine monitoring systems are able to more effectively detect and monitor developing faults. In undertaking this research knowledge concerning engine function and relevant failure mechanisms was combined with different modelling methods to generate a framework that was used to effectively identify fault related activity within acoustic emissions recorded from different engines.
Resumo:
Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.
Resumo:
Today, the majority of semiconductor fabrication plants (fabs) conduct equipment preventive maintenance based on statistically-derived time- or wafer-count-based intervals. While these practices have had relative success in managing equipment availability and product yield, the cost, both in time and materials, remains high. Condition-based maintenance has been successfully adopted in several industries, where costs associated with equipment downtime range from potential loss of life to unacceptable affects to companies’ bottom lines. In this paper, we present a method for the monitoring of complex systems in the presence of multiple operating regimes. In addition, the new representation of degradation processes will be used to define an optimization procedure that facilitates concurrent maintenance and operational decision-making in a manufacturing system. This decision-making procedure metaheuristically maximizes a customizable cost function that reflects the benefits of production uptime, and the losses incurred due to deficient quality and downtime. The new degradation monitoring method is illustrated through the monitoring of a deposition tool operating over a prolonged period of time in a major fab, while the operational decision-making is demonstrated using simulated operation of a generic cluster tool.
Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test
Resumo:
In this paper we present a novel place recognition algorithm inspired by recent discoveries in human visual neuroscience. The algorithm combines intolerant but fast low resolution whole image matching with highly tolerant, sub-image patch matching processes. The approach does not require prior training and works on single images (although we use a cohort normalization score to exploit temporal frame information), alleviating the need for either a velocity signal or image sequence, differentiating it from current state of the art methods. We demonstrate the algorithm on the challenging Alderley sunny day – rainy night dataset, which has only been previously solved by integrating over 320 frame long image sequences. The system is able to achieve 21.24% recall at 100% precision, matching drastically different day and night-time images of places while successfully rejecting match hypotheses between highly aliased images of different places. The results provide a new benchmark for single image, condition-invariant place recognition.
Resumo:
The absorptive capacity of organisations is one of the key drivers of innovation performance in any industry. This research seeks to refine our understanding of the relationship between absorptive capacity and innovation performance, with a focus on characterising the absorptive capacity of the different participant groups within the Australian road industry supply chain. One of the largest and most comprehensive surveys ever undertaken of innovation in road construction was completed in 2011 by the Queensland University of Technology (QUT), based on the Australian road industry. The survey of over 200 construction industry participants covered four sectors, comprising suppliers (manufacturers and distributors), consultants (engineering consultants), contractors (head and subcontractors) and clients (state government road agencies). The survey measured the absorptive capacity and innovation activity exhibited by organisations within each of these participant groups, using the perceived importance of addressing innovation obstacles as a proxy for innovation activity. One of the key findings of the survey is about the impact of participant competency on product innovation activity. The survey found that the absorptive capacity of industry participants had a significant and positive relationship with innovation activity. Regarding the distribution of absorptive capacity, the results indicate that suppliers are more likely to have high levels of absorptive capacity than the other participant groups, with 32% of suppliers showing high absorptive capacity, ahead of contractors (18%), consultants (11%), and clients (7%). These results support the findings of previous studies in the literature and suggest the importance of policies to enhance organisational learning, particularly in relation to openness to new product ideas.
Resumo:
Franchising has become a way to minimise the risks of small business management. There has been little research into the factors that promote franchise relationship success. This study attempts to empirically examine the important elements (relationship quality, customer loyalty and cooperation), which might promote a successful long-term franchising relationship between franchisors and franchisees within the context of convenience stores in Taiwan. A model of these relationships was developed and tested. A total of 500 surveys were mailed to a random sample of convenience stores’ franchisee owners among the four main franchisors in Taiwan. The results show that relationship quality positively influences the cooperation between franchisors and franchisees and is positively correlated with franchisee loyalty. Additionally, the cooperative behaviour between franchisees and franchisors is significantly associated with franchisees’ loyalty.
Resumo:
Learning and memory depend on signaling mole- cules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the train- ing stimuli were presented in a non-associative manner. An- atomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically impli- cated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nu- cleus of the amygdala. When ML-7 was applied without as- sociative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the cir- cuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.
Resumo:
This article investigates the extent to which the purported greening of food retailing and consumption in Australia is consistent with the development of a corporate-environmental food regime. Recent developments in food regime theory, particularly the concept of an emerging third food regime (the so-called ‘corporate-environmental food regime’), provide a useful organizing framework for understanding recent agri-restructuring trends. We find that, while a globally based, third food regime is becoming more apparent, the attributes that relate to corporate retail-driven greening of the supply chain are less evident within Australia’s domestic market than in its EU counterparts. However, there is some evidence that Australia’s export market is subject to some degree of ‘greening at a distance’ due to private regulations imposed by supermarkets overseas. We argue that while broader agri-restructuring trends may be evident at an international level, elements of greening specific to national contexts are important for determining the trajectory of any third food regime.
Resumo:
Low speed rotating machines which are the most critical components in drive train of wind turbines are often menaced by several technical and environmental defects. These factors contribute to mount the economic requirement for Health Monitoring and Condition Monitoring of the systems. When a defect is happened in such system result in reduced energy loss rates from related process and due to it Condition Monitoring techniques that detecting energy loss are very difficult if not possible to use. However, in the case of Acoustic Emission (AE) technique this issue is partly overcome and is well suited for detecting very small energy release rates. Acoustic Emission (AE) as a technique is more than 50 years old and in this new technology the sounds associated with the failure of materials were detected. Acoustic wave is a non-stationary signal which can discover elastic stress waves in a failure component, capable of online monitoring, and is very sensitive to the fault diagnosis. In this paper the history and background of discovering and developing AE is discussed, different ages of developing AE which include Age of Enlightenment (1950-1967), Golden Age of AE (1967-1980), Period of Transition (1980-Present). In the next section the application of AE condition monitoring in machinery process and various systems that applied AE technique in their health monitoring is discussed. In the end an experimental result is proposed by QUT test rig which an outer race bearing fault was simulated to depict the sensitivity of AE for detecting incipient faults in low speed high frequency machine.
Resumo:
Standard Monte Carlo (sMC) simulation models have been widely used in AEC industry research to address system uncertainties. Although the benefits of probabilistic simulation analyses over deterministic methods are well documented, the sMC simulation technique is quite sensitive to the probability distributions of the input variables. This phenomenon becomes highly pronounced when the region of interest within the joint probability distribution (a function of the input variables) is small. In such cases, the standard Monte Carlo approach is often impractical from a computational standpoint. In this paper, a comparative analysis of standard Monte Carlo simulation to Markov Chain Monte Carlo with subset simulation (MCMC/ss) is presented. The MCMC/ss technique constitutes a more complex simulation method (relative to sMC), wherein a structured sampling algorithm is employed in place of completely randomized sampling. Consequently, gains in computational efficiency can be made. The two simulation methods are compared via theoretical case studies.
Resumo:
The present article gives an overview of the reversible addition fragmentation chain transfer (RAFT) process. RAFT is one of the most versatile living radical polymerization systems and yields polymers of predictable chain length and narrow molecular weight distribution. RAFT relies on the rapid exchange of thiocarbonyl thio groups between growing polymeric chains. The key strengths of the RAFT process for polymer design are its high tolerance of monomer functionality and reaction conditions, the wide range of well-controlled polymeric architectures achievable, and its (in-principle) non-rate-retarding nature. This article introduces the mechanism of polymerization, the range of polymer molecular weights achievable, the range of monomers in which polymerization is controlled by RAFT, the various polymeric architectures that can be obtained, the type of end-group functionalities available to RAFT-made polymers, and the process of RAFT polymerization.
Resumo:
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.