996 resultados para Coran 3 :55 et 4:157
Resumo:
The HIV-1 RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones has been analyzed with different topological descriptors obtained from DRAGON software. Here, simple topological descriptors (TOPO), Galvez topological charge indices (GVZ) and 2D autocorrelation descriptors (2DAUTO) have been found to yield good predictive models for the activity of these compounds. The correlations obtained from the TOPO class descriptors suggest that less extended or compact saturated structural templates would be better for the activity. The participating GVZ class descriptors suggest that they have same degree of influence on the activity. In 2DAUTO class, the large participation of descriptors of lags seven and three indicate the association of activity information with the seven and three centered structural fragments of these compounds. The physicochemical weighting components of these descriptors suggest homogeneous influence of mass, volume, electronegativity and/ or polarizability on the activity.
Resumo:
We re-analyze the signal of non-planetary energetic neutral atoms (ENAs) in the 0.4-5.0 keV range measured with the Neutral Particle Detector (NPD) of the ASPERA-3 and ASPERA-4 experiments on board the Mars and Venus Express satellites. Due to improved knowledge of sensor characteristics and exclusion of data sets affected by instrument effects, the typical intensity of the ENA signal obtained by ASPERA-3 is an order of magnitude lower than in earlier reports. The ENA intensities measured with ASPERA-3 and ASPERA-4 now agree with each other. In the present analysis, we also correct the ENA signal for Compton-Getting and for ionization loss processes under the assumption of a heliospheric origin. We find spectral shapes and intensities consistent with those measured by the Interstellar Boundary Explorer (IBEX). The principal advantage of ASPERA with respect to the IBEX sensors is the two times better spectral resolution. In this study, we discuss the physical significance of the spectral shapes and their potential variation across the sky. At present, these observations are the only independent test of the heliospheric ENA signal measured with IBEX in this energy range. The ASPERA measurements also allow us to check for a temporal variation of the heliospheric signal as they were obtained between 2003 and 2007, whereas IBEX has been operational since the end of 2008.
Resumo:
By reacting 4,4′-bipyridine (bpy) with selected trinuclear triangular CuII complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2(LL′)] [pz = pyrazolate anion; R = CH3, CH3CH2, CH2═CH, CH2═C(CH3); L, L′ = Hpz, H2O, MeOH] in MeOH, the substitution of monotopic ligands by ditopic bpy was observed. Depending on the stoichiometric reaction ratios, different compounds were isolated and structurally characterized. One- and two-dimensional coordination polymers (CPs), as well as two hexanuclear CuII clusters were identified. One of the hexanuclear clusters self-assembles into a supramolecular three-dimensional structure, and its crystal packing shows the presence of two intersecting channels, one of which is almost completely occupied by guest bpy, while in the second one guest water molecules are present. This compound also shows a reversible, thermally induced, single-crystal-to-single-crystal transition.
Resumo:
The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.
Resumo:
Darmstadt: Soiree des Ministerpräsidenten von Dalwigk, Material zu einem Artikel für die Frankfurter Latern, Entwurf eines Zeitungsartikels
Resumo:
Trägerband: Ms. Barth. 28; Vorbesitzer: Bartholomaeusstift Frankfurt am Main
Resumo:
AR
Resumo:
Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).