999 resultados para Copper crystals.
Resumo:
Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.
Resumo:
The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.
Resumo:
No abstract.
Resumo:
The electron and hole mobilities of octathio[8]circulene (sulflower) crystal have been calculated using quantum chemical methods, with accurate determination of reorganization energies and the rate of charge transfer, the key parameters controlling the charge carriers conductance. We find this molecular crystal to be an excellent conductor with large mobilities for both the charge carriers. Moreover, the hole mobility is found to be slightly larger than the electron mobility. Such an ambipolar organic crystal with substantial carrier mobilities shows possibilities of sophisticated device fabrication in advanced electronics.
Resumo:
Composing nanocomposites: Co-digestive ripening of as-prepared Mg and Cu colloids prepared by the solvated metal atom dispersion method results in a highly monodisperse colloid of Mg/Cu nanocomposite with an average particle size of 3.0 +/- 0.5 nm. Annealing of these samples at 300 degrees C gives the Cu/MgO nanocomposite.
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
A convenient method for the conversion of electron rich benzylic hydrocarbons to carbonyl compounds is reported.
Resumo:
Abstract is not available.
Resumo:
The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.
Resumo:
We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.
Resumo:
For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments.
Resumo:
A copper-binding complex formed in the exopolysaccharide fraction of Image was isolated and characterized using a variety of techniques. By comparison with model Cu(II) complexes of uronic acids, it is shown that the Image forms a square-planer, cupric complex similar to cupric glucuronates.