975 resultados para Copepod parasites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000–566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood flukes Schistosoma mansoni and Schistosoma japonicum inflict immense suffering as agents of human schistosomiasis. Previous investigations have found the nervous systems of these worms contain abundant immunoreactivity to antisera targeting invertebrate neuropeptide Fs (NPFs) as well as structurally similar neuropeptides of the mammalian neuropeptide Y (NPY) family. Here, cDNAs encoding NPF in these worms were identified, and the mature neuropeptides from the two species differed by only a single amino acid. Both neuropeptides feature the characteristics common among NPFs; they are 36 amino acids long with a carboxyl-terminal Gly-Arg-X-Arg-Phe-amide and Tyr residues at positions 10 and 17 from the carboxyl terminus. Synthetic S. mansoni NPF potently inhibits the forskolin-stimulated accumulation of cAMP in worm homogenates, with significant effects at 10(-11) M. This is the first demonstration of an endogenous inhibition of cAMP by an NPF, and because this is the predominant pathway associated with vertebrate NPY family peptides, it demonstrates a conservation of downstream signaling pathways used by NPFs and NPY peptides.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a synthesis of empirical and theoretical work investigating how parasites influence competitive and predatory interactions between other species. We examine the direct and indirect effects of parasitism and discuss examples of density and parasite-induced trait-mediated effects. Recent work reveals previously unrecognized complexity in parasite-mediated interactions. In addition to parasite-modified and apparent competition leading to species exclusion or enabling coexistence, parasites and predators interact in different ways to regulate or destablize the population dynamics of their joint prey. An emerging area is the impact of parasites on intraguild predation (IGP). Parasites can increase vulnerability of infected individuals to cannibalism or predation resulting in reversed species dominance in IGP hierarchies. We discuss the potential significance of parasites for community structure and biodiversity, in particular their role in promoting species exclusion or coexistence and the impact of emerging diseases. Ongoing invasions provide examples where parasites mediate native/invader interactions and play a key role in determining the outcome of invasions. We highlight the need for more quantitative data to assess the impact of parasites on communities, and the combination of theoretical and empirical studies to examine how the effects of parasitism scale up to community-level processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copepod Calanus finmarchicus is the major contributor to zooplankton biomass in the North Atlantic and Norwegian Sea, but recent studies have shown a 70% decrease in abundance as well as a northward shift in the species' range. Insights into dispersal capabilities gained from population genetic studies will be crucial in predicting the response of C. finmarchicus communities to climate change and, consequently, we have developed a set of expressed sequence tag-derived microsatellite markers to allow fine-scale elucidation of population structuring and dispersal. Ten polymorphic markers displayed between two and 19 alleles, with levels of expected heterozygosity ranging from 0.044 to 0.924.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solitary and presocial aculueate Hymenoptera are parasitized by a range of dipteran species in the families Axithomyiidae, Bombyliidae, Conopidae, Phoridae, and Sarcophagidae that are likely to impact on their hosts. We undertook a study over several years of a univoltine and communal bee, Andrena agilissima, and its main dipteran parasites, in particular the satellite fly Leucophora personata (Diptera: Anthomyiidae). Behavioural and ecological data were collected from one nesting aggregation of the host bee on the island of Elba, Italy, from 1993 to 2003, and from a foraging site of the bee, ca 5 km from the nesting aggregation. Other Diptera associated with A. agilissmia at the field site were the bee fly Bombylius fimbriatus (Bombyliidae), the conopid fly Zodion cinereum (Conopidae), and the scuttle fly Megaselia andrenae (Phoridae). The phenology of the Diptera broadly overlapped with that of their host across the season of activity (end of April and all of May). Diurnal activity patterns differed slightly; L. personata in particular was active at the host's nesting site before A. agilissima. Female satellite flies also showed a range of behaviours in gaining entry to a host nest. We summarize published data on this and other Leucophora species that parasitize Andrena host bees. Host bees returning to their nests occasionally undertook zig-zag flight manoeuvres if followed by a satellite fly that were generally successful in evading the fly. Satellite flies that entered a nest, presumably to oviposit, were less likely to remain therein if another host bee entered the same nest, suggesting that one advantage to communal nesting for this host is a reduction in brood cell parasitism by L. personata. We provide the first clear evidence for parasitism by a Zodion of any Andrena host. Both L. personata and M. andrenae concentrated their parasitic activities in the zone of the host nesting aggregation with highest nest densities. Three of the Diptera, L. personata, B. fimbriatus, and Z. cinereum, seemed to have extremely low rates of parasitism whilst that of M. andrenae appeared low. Though they have refined parasitic behaviour that allows them to gain entry into host nests (L. personata, B. fimbriatus, and M. andrenae) or to parasitize adults (Z. cinercum), these parasites seem not to impact upon the dynamics of the host A. agilissima at the nesting aggregation, and the host possesses traits to reduce parasitism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraguild predation (IGP) is common in communities, yet theory suggests it should not often persist and coexistence of participating species should be rare. As parasitism can play keystone roles in interactions between competitors, and between predators and prey, here we examine the role of parasites in maintaining IGP. We used numerical exploration of population dynamic equations to determine coexistence and exclusion zones for two species engaged in IGP with shared parasitism. We demonstrate that parasitism increases the range of conditions leading to coexistence when the parasite exerts a greater deleterious effect on the 'stronger' species in terms of the combined effects of competition and predation. Such a parasite can enable an inferior competitor that is also the less predatory to persist, and may actually lead to numerical dominance of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000-566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA interference (RNAi) has revolutionised approaches to gene function determination. From a parasitology perspective, gene function studies have the added dimension of providing validation data, increasingly deemed essential to the initial phases of drug target selection, pre-screen development. Notionally advantageous to those working on nematode parasites is the fact that Caenorhabditis elegans research spawned RNAi discovery and continues to seed our understanding of its fundamentals. Unfortunately, RNAi data for nematode parasites illustrate variable and inconsistent susceptibilities which undermine confidence and exploitation. Now well-ensconced in an era of nematode parasite genomics, we can begin to unscramble this variation.