821 resultados para Cooperative games (Mathematics)
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
We consider the problem of axiomatizing the Shapley value on the class of assignment games. We first show that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games by providing alternative solutions that satisfy these axioms. However, when considering an assignment game as a communication graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph buyers are connected with sellers only, we show that Myerson's component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.
Resumo:
We consider von Neumann -- Morgenstern stable sets in assignment games with one seller and many buyers. We prove that a set of imputations is a stable set if and only if it is the graph of a certain type of continuous and monotone function. This characterization enables us to interpret the standards of behavior encompassed by the various stable sets as possible outcomes of well-known auction procedures when groups of buyers may form bidder rings. We also show that the union of all stable sets can be described as the union of convex polytopes all of whose vertices are marginal contribution payoff vectors. Consequently, each stable set is contained in the Weber set. The Shapley value, however, typically falls outside the union of all stable sets.
Resumo:
We consider various lexicographic allocation procedures for coalitional games with transferable utility where the payoffs are computed in an externally given order of the players. The common feature of the methods is that if the allocation is in the core, it is an extreme point of the core. We first investigate the general relationship between these allocations and obtain two hierarchies on the class of balanced games. Secondly, we focus on assignment games and sharpen some of these general relationship. Our main result is the coincidence of the sets of lemarals (vectors of lexicographic maxima over the set of dual coalitionally rational payoff vectors), lemacols (vectors of lexicographic maxima over the core) and extreme core points. As byproducts, we show that, similarly to the core and the coalitionally rational payoff set, also the dual coalitionally rational payoff set of an assignment game is determined by the individual and mixed-pair coalitions, and present an efficient and elementary way to compute these basic dual coalitional values. This provides a way to compute the Alexia value (the average of all lemacols) with no need to obtain the whole coalitional function of the dual assignment game.
Resumo:
We examine assignment games, wherematched pairs of firms and workers create some monetary value to distribute among themselves and the agents aim to maximize their payoff. In the majority of this literature, externalities - in the sense that a pair’s value depends on the pairing of the others - have been neglected. However, inmost applications a firm’s success depends on, say, the success of its rivals and suppliers. Thus, it is natural to ask how the classical results on assignment games are affected by the introduction of externalities? The answer is – dramatically. We find that (i) a problem may have no stable outcome, (ii) stable outcomes can be inefficient (not maximize total value), (iii) efficient outcomes can be unstable, and (iv) the set of stable outcomes may not form a lattice. We show that stable outcomes always exist if agents are "pessimistic." This is a knife-edge result: there are problems in which the slightest optimism by a single pair erases all stable outcomes.
Resumo:
Social dilemmas, in particular the prisoners' dilemma, are represented as congestion games, and within this framework soft correlated equilibria as introduced by Forgó F. (2010, A generalization of correlated equilibrium: A new protocol. Mathematical Social Sciences 60:186-190) is used to improve inferior Nash payoffs that are characteristic of social dilemmas. These games can be extended to several players in different ways preserving some important characteristics of the original 2-person game. In one of the most frequently studied models of the n-person prisoners' dilemma game we measure the performance of the soft correlated equilibrium by the mediation and enforcement values. For general prisoners' dilemma games the mediation value is ∞, the enforcement value is 2. This also holds for the class of separable prisoners’ dilemma games.
Resumo:
Groundwater is a common-pool resource that is subject to depletion in many places around the world as a result of increased use of irrigation and water-demanding cash crops. Where state capacity to control groundwater use is limited, collective action is important to increase recharge and restrict highly water-consumptive crops. We present results of field experiments in hard rock areas of Andhra Pradesh, India, to examine factors affecting groundwater use. Two nongovernmental organizations (NGOs) ran the games in communities where they were working to improve watershed and water management. Results indicate that, when the links between crop choice and groundwater depletion is made explicit, farmers can act cooperatively to address this problem. Longer NGO involvement in the villages was associated with more cooperative outcomes in the games. Individuals with more education and higher perceived community social capital played more cooperatively, but neither gender nor method of payment had a significantly effect on individual behavior. When participants could repeat the game with communication, similar crop choice patterns were observed. The games provided an entry point for discussion on the understanding of communities of the interconnectedness of groundwater use and crop choice.
Resumo:
A vector field in n-space determines a competitive (or cooperative) system of differential equations provided all of the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The main results in this article are the following. A cooperative system cannot have nonconstant attracting periodic solutions. In a cooperative system whose Jacobian matrices are irreducible the forward orbit converges for almost every point having compact forward orbit closure. In a cooperative system in 2 dimensions, every solution is eventually monotone. Applications are made to generalizations of positive feedback loops.
Resumo:
In Costa Rica, many secondary students have serious difficulties to establish relationships between mathematics and real-life contexts. They question the utilitarian role of the school mathematics. This fact motivated the research object of this report which evidences the need to overcome methodologies unrelated to students’ reality, toward new didactical options that help students to value mathematics, reasoning and its applications, connecting it with their socio-cultural context. The research used a case study as a qualitative methodology and the social constructivism as an educational paradigm in which the knowledge is built by the student; as a product of his social interactions. A collection of learning situations was designed, validated, and implemented. It allowed establishing relationships between mathematical concepts and the socio-cultural context of participants. It analyzed the impact of students’socio-cultural context in their mathematics learning of basic concepts of real variable functions, consistent with the Ministry of Education (MEP) Official Program. Among the results, it was found that using students’sociocultural context improved their motivational processes, mathematics sense making, and promoted cooperative social interactions. It was evidenced that contextualized learning situations favored concepts comprehension that allow students to see mathematics as a discipline closely related with their every-day life.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Atomic clouds prepared in ""timed Dicke"" states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.
Resumo:
Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure force exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering in the cooperative process. They lead, respectively, to a suppression or an enhancement of the radiation pressure force. We observe a maximum in the radiation pressure force as a function of the phase shift induced in the incident laser beam by the cloud's refractive index. The maximum marks the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.