927 resultados para Conventional methodologies
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Technologies and Methodologies for the Detection of Harmful Algae and their Toxins" convened in St. Petersburg, Florida, October 22- 24, 2008 and was co-sponsored by ACT (http://act-us.info); the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET, http://ciceet.unh.edu); and the Florida Fish and Wildlife Conservation Commission (FWC, http://www.myfwc.com). Participants from various sectors, including researchers, coastal decision makers, and technology vendors, collaborated to exchange information and build consensus. They focused on the status of currently available detection technologies and methodologies for harmful algae (HA) and their toxins, provided direction for developing operational use of existing technology, and addressed requirements for future technology developments in this area. Harmful algal blooms (HABs) in marine and freshwater systems are increasingly common worldwide and are known to cause extensive ecological, economic, and human health problems. In US waters, HABs are encountered in a growing number of locations and are also increasing in duration and severity. This expansion in HABs has led to elevated incidences of poisonous seafood, toxin-contaminated drinking water, mortality of fish and other animals dependent upon aquatic resources (including protected species), public health and economic impacts in coastal and lakeside communities, losses to aquaculture enterprises, and long-term aquatic ecosystem changes. This meeting represented the fourth ACT sponsored workshop that has addressed technology developments for improved monitoring of water-born pathogens and HA species in some form. A primary motivation was to assess the need and community support for an ACT-led Performance Demonstration of Harmful Algae Detection Technologies and Methodologies in order to facilitate their integration into regional ocean observing systems operations. The workshop focused on the identification of region-specific monitoring needs and available technologies and methodologies for detection/quantification of harmful algal species and their toxins along the US marine and freshwater coasts. To address this critical environmental issue, several technologies and methodologies have been, or are being, developed to detect and quantify various harmful algae and their associated toxins in coastal marine and freshwater environments. There are many challenges to nationwide adoption of HAB detection as part of a core monitoring infrastructure: the geographic uniqueness of primary algal species of concern around the country, the variety of HAB impacts, and the need for a clear vision of the operational requirements for monitoring the various species. Nonetheless, it was a consensus of the workshop participants that ACT should support the development of HA detection technology performance demonstrations but that these would need to be tuned regionally to algal species and toxins of concern in order to promote the adoption of state of the art technologies into HAR monitoring networks. [PDF contains 36 pages]
Resumo:
In a survey conducted to find out the status of integrated rice-cum-fish culture in Niger State, Nigeria, 0.37 ha of Fadama wetlands was utilized for rice-cum-fish culture and at experimental stage. In the case study of this rice-cum-fish model, the Nile Tilapia (Oreochromis niloticus) was involved. The result was that 1,4720 kg/ha/yr could be produced using chick manure application under rice-cum-fish culture model. The available records reveal that 233,079 ha out of 495,000 ha of estimated Fadama in Niger State was used for rice cultivation in 1997. If 233,079 ha were to be used for integrated rice-cum fish culture, it is estimated that 343,092 mt of fish (Oreochromis niloticus) could be produced per year. The fish demand in Niger State in 2002 was 50,000 mt. The NPK application under rice-cum-fish production gave the best rice production estimated at 43,968.0 kg/ha/yr. The percentage increase in rice yield as well as increase in net income due to introduction of fish was 10.1 % and 54.4% respectively. The culture system is therefore recommended for adoption towards greater participation in aquaculture development by the farmers
Resumo:
As it is clearly indicated in the title of this book section, it overviews the methodologies used in the 4-beaches Survey and in the various Stakeholders' Workshops held in all the three riparian countries of the Lake Victoria.
Experimental study of nonlinear switching characteristics of conventional 2×2 fused tapered couplers
Resumo:
The nonlinear switching characteristics of fused fiber directional couplers were studied experimentally. By using femtosecond laser pulses with pulse width of 100 fs and wavelength of about 1550 nm from a system of Ti:sapphire laser and optical parametric amplifier (OPA), the nonlinear switching properties of a null coupler and a 100% coupler were measured. The experimental results were coincident with the simulations based on nonlinear propagation equations in fiber by using super-mode theory. Nonlinear loss in fiber was also measured to get the injected power at the coupler. After deducting the nonlinear loss and input efficiency, the nonlinear switching critical peak powers for a 100% and a null fused couplers were calculated to be 9410 and 9440 W, respectively. The nonlinear loss parameter P_(N) in an expression of α_(NL)=αP/P_(N) was obtained to be P_(N)=0.23 W.
Resumo:
The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.
Resumo:
Computational imaging is flourishing thanks to the recent advancement in array photodetectors and image processing algorithms. This thesis presents Fourier ptychography, which is a computational imaging technique implemented in microscopy to break the limit of conventional optics. With the implementation of Fourier ptychography, the resolution of the imaging system can surpass the diffraction limit of the objective lens's numerical aperture; the quantitative phase information of a sample can be reconstructed from intensity-only measurements; and the aberration of a microscope system can be characterized and computationally corrected. This computational microscopy technique enhances the performance of conventional optical systems and expands the scope of their applications.
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
Siren and Amphiuma are two poorly known genera of aquatic salamanders that occur in the Southeastern United States. A primarily bottom-dwelling existence makes these salamanders difficult to detect with conventional sampling methodologies. Therefore, the current status of their populations is unknown. I compared the capture success of modified crayfish traps and plastic minnow traps in capturing these salamanders. In addition, a mark-recapture study of S. lacertina (Greater siren) and A. means (Two-toed amphiuma) was conducted at Okefenokee National Wildlife Refuge (southern Georgia) and at Katharine Ordway Preserve (north-central Florida) from August 2001 until September 2002. Crayfish traps were much more successful than minnow traps in catching siren and amphiuma. Crayfish traps yielded 270 captures for an overall capture success of 16%, whereas minnow traps yielded only 13 captures for an overall success rate of 0.05%. In addition, several marking techniques were evaluated, and of these, only passive integrated transponder (PIT) tags were retained for the duration of the study. Therefore, I recommend this marking technique for long-term monitoring of S. lacertina and A. means. Several variables were found to have significant effects on capture rates of salamanders. A. means were most often captured in summer and the number of captures was positively correlated with water temperature, water level, and rainfall. S. lacertina were most often captured during winter and spring. Number of captures was negatively correlated with water temperature, while no relationship was found with water level or rainfall. Trap day and baiting had no significant effect on number of A. means or S. lacertina captured. Recapture probabilities of both species were low, 0.025-0.03 for S. lacertina and 0.08-0.11 for A. means. Monthly survival rates were high, 0.77-0.97 for A. means and 0.88-1.00 for S. lacertina. Density estimates of 1.3 salamanders/m2 (S. lacertina) and 0.28 salamanders/m2 (A. means) were obtained for Lake Suggs using Jolly-Seber models. Siren and amphiuma make up a substantial part of wetland biomass and can impact many other wetland species. Thus, more attention must be focused on evaluating and monitoring their populations.