926 resultados para Control-support model
Resumo:
This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.
Resumo:
We study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.
Resumo:
The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
OBJECTIVE To evaluate the cross-cultural validity of the Demand-Control Questionnaire, comparing the original Swedish questionnaire with the Brazilian version. METHODS We compared data from 362 Swedish and 399 Brazilian health workers. Confirmatory and exploratory factor analyses were performed to test structural validity, using the robust weighted least squares mean and variance-adjusted (WLSMV) estimator. Construct validity, using hypotheses testing, was evaluated through the inspection of the mean score distribution of the scale dimensions according to sociodemographic and social support at work variables. RESULTS The confirmatory and exploratory factor analyses supported the instrument in three dimensions (for Swedish and Brazilians): psychological demands, skill discretion and decision authority. The best-fit model was achieved by including an error correlation between work fast and work intensely (psychological demands) and removing the item repetitive work (skill discretion). Hypotheses testing showed that workers with university degree had higher scores on skill discretion and decision authority and those with high levels of Social Support at Work had lower scores on psychological demands and higher scores on decision authority. CONCLUSIONS The results supported the equivalent dimensional structures across the two culturally different work contexts. Skill discretion and decision authority formed two distinct dimensions and the item repetitive work should be removed.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica, Especialidade de Sistemas Digitais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Real-time monitoring applications may be used in a wireless sensor network (WSN) and may generate packet flows with strict quality of service requirements in terms of delay, jitter, or packet loss. When strict delays are imposed from source to destination, the packets must be delivered at the destination within an end-to-end delay (EED) hard limit in order to be considered useful. Since the WSN nodes are scarce both in processing and energy resources, it is desirable that they only transport useful data, as this contributes to enhance the overall network performance and to improve energy efficiency. In this paper, we propose a novel cross-layer admission control (CLAC) mechanism to enhance the network performance and increase energy efficiency of a WSN, by avoiding the transmission of potentially useless packets. The CLAC mechanism uses an estimation technique to preview packets EED, and decides to forward a packet only if it is expected to meet the EED deadline defined by the application, dropping it otherwise. The results obtained show that CLAC enhances the network performance by increasing the useful packet delivery ratio in high network loads and improves the energy efficiency in every network load.
Resumo:
There is not an experimental model of localized cutaneous leishmaniasis (LCL) caused by Leishmania (Leishmania) mexicana. The aim of the present study was to characterize the clinical and histological features of Peromyscus yucatanicus experimentally infected with L. (L.) mexicana. A total of 54 P. yucatanicus (groups of 18) were inoculated with 1x10(6) promastigotes of L. (L.) mexicana in the base of the tail. They were euthanized at three and six months post experimental infection. The control group was inoculated with RPMI-1640. The predominant clinical sign observed was a single ulcerated lesion in 27.77% (5/18) and in 11.11% (2/18) P. yucatanicus at three and six months respectively. The histological pattern described as chronic granulomatous inflammation with or without necrosis was found in 7/7 (100%) biopsies of euthanized P. yucatanicus at three (n = 5) and six (n = 2) months, respectively. These results resembled clinical and histological features caused by L. (L.) mexicana in humans, and support the possibility to employ P. yucatanicus as a novel experimental model to study LCL caused by this parasite.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores Especialidade: Robótica e Manufactura Integrada