998 resultados para Control equipment
Resumo:
The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.
Resumo:
This thesis describes an investigation into methods for controlling the mode distribution in multimode optical fibres. The major contributions presented in this thesis are summarised below. Emerging standards for Gigabit Ethernet transmission over multimode optical fibre have led to a resurgence of interest in the precise control, and specification, of modal launch conditions. In particular, commercial LED and OTDR test equipment does not, in general, comply with these standards. There is therefore a need for mode control devices, which can ensure compliance with the standards. A novel device consisting of a point-load mode-scrambler in tandem with a mode-filter is described in this thesis. The device, which has been patented, may be tuned to achieve a wide range of mode distributions and has been implemented in a ruggedised package for field use. Various other techniques for mode control have been described in this work, including the use of Long Period Gratings and air-gap mode-filters. Some of the methods have been applied to other applications, such as speckle suppression and in sensor technology. A novel, self-referencing, sensor comprising two modal groups in the Mode Power Distribution has been designed and tested. The feasibility of a two-channel Mode Group Diversity Multiplexed system has been demonstrated over 985m. A test apparatus for measuring mode distribution has been designed and constructed. The apparatus consists of a purpose-built video microscope, and comprehensive control and analysis software written in Visual Basic. The system may be fitted with a Silicon camera or an InGaAs camera, for measurement in the 850nm and 130nm transmission windows respectively. A limitation of the measurement method, when applied to well-filled fibres, has been identified and an improvement to the method has been proposed, based on modelled Laguerre Gauss field solutions.
Resumo:
The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.
Resumo:
Flexible Assembly Systems (FASs) are normally associated with the automatic, or robotic, assembly of products, supported by automated material handling systems. However, manual assembly operations are still prevalent within many industries, where the complexity and variety of products prohibit the development of suitable automated assembly equipment. This article presents a generic model for incorporating flexibility into the design and control of assembly operations concerned with high variety/low volume manufacture, drawing on the principles for Flexible Manufacturing Systems (FMS) and Just-in-Time (JIT) delivery. It is based on work being undertaken in an electronics company where the assembly operations have been overhauled and restructured in response to a need for greater flexibility, shorter cycle times and reduced inventory levels. The principles employed are in themselves not original. However, the way they have been combined and tailored has created a total manufacturing control system which represents a new concept for responding to demands placed on market driven firms operating in an uncertain environment.
Resumo:
The development of the distributed information measurement and control system for optical spectral research of particle beam and plasma objects and the execution of laboratory works on Physics and Engineering Department of Petrozavodsk State University are described. At the hardware level the system is represented by a complex of the automated workplaces joined into computer network. The key element of the system is the communication server, which supports the multi-user mode and distributes resources among clients, monitors the system and provides secure access. Other system components are formed by equipment servers (CАМАC and GPIB servers, a server for the access to microcontrollers MCS-196 and others) and the client programs that carry out data acquisition, accumulation and processing and management of the course of the experiment as well. In this work the designed by the authors network interface is discussed. The interface provides the connection of measuring and executive devices to the distributed information measurement and control system via Ethernet. This interface allows controlling of experimental parameters by use of digital devices, monitoring of experiment parameters by polling of analog and digital sensors. The device firmware is written in assembler language and includes libraries for Ethernet-, IP-, TCP- и UDP-packets forming.
Resumo:
The present paper is devoted to creation of cryptographic data security and realization of the packet mode in the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions. This system gives a remote access to information and instrument resources within the Intranet/Internet networks. The system provides remote access to information and hardware resources for the natural sciences within the Intranet/Internet networks. The access to physical equipment is realized through the standard interface servers (PXI, CАМАC, and GPIB), the server providing access to Ethernet devices, and the communication server, which integrates the equipment servers into a uniform information system. The system is used to make research task in optical spectroscopy, as well as to support the process of education at the Department of Physics and Engineering of Petrozavodsk State University.
Resumo:
Microneedles (MNs) are emerging devices that can be used for the delivery of drugs at specific locations1. Their performance is primarily judged by different features and the penetration through tissue is one of the most important aspects to evaluate. For detailed studies of MN performance different kind of in-vitro, exvivo and in-vivo tests should be performed. The main limitation of some of these tests is that biological tissue is too heterogeneous, unstable and difficult to obtain. In addition the use of biological materials sometimes present legal issues. There are many studies dealing with artificial membranes for drug diffusion2, but studies of artificial membranes for Microneedle mechanical characterization are scarce3. In order to overcome these limitations we have developed tests using synthetic polymeric membranes instead of biological tissue. The selected artificial membrane is homogeneous, stable, and readily available. This material is mainly composed of a roughly equal blend of a hydrocarbon wax and a polyolefin and it is commercially available under the brand name Parafilm®. The insertion of different kind of MN arrays prepared from crosslinked polymers were performed using this membrane and correlated with the insertion of the MN arrays in ex-vivo neonatal porcine skin. The insertion depth of the MNs was evaluated using Optical coherence tomography (OCT). The implementation of MN transdermal patches in the market can be improved by make this product user-friendly and easy to use. Therefore, manual insertion is preferred to other kind of procedures. Consequently, the insertion studies were performed in neonatal porcine skin and the artificial membrane using a manual insertion force applied by human volunteers. The insertion studies using manual forces correlated very well with the same studies performed with a Texture Analyzer equipment. These synthetic membranes seem to mimic closely the mechanical properties of the skin for the insertion of MNs using different methods of insertion. In conclusion, this artificial membrane substrate offers a valid alternative to biological tissue for the testing of MN insertion and can be a good candidate for developing a reliable quality control MN insertion test.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The objective of the research project was to seek acceptable solutions to the air pollution problem created in the asphalt recycling process using modified conventional equipment.
Resumo:
La aplicadora está basada en la utilización de un sistema autopropulsado de tracción mecánica, el cual dispone de un sistema de rodadura de cadenas. Sobre dicho equipo de tracción, se dispondrán de los diversos elementos necesarios para realizar la aplicación de productos fitosanitarios, como por ejemplo un equipo de pulverización, nebulización, etc. El equipo podrá ser utilizado como pulverizador, atomizador, nebulizador y sistema de distribución acoplado a una, instalación fija de productos fitosanitarios de un invernadero, controlando en todas las ocasiones la dosis aplicada sin depender del operario encargado de la aplicación. Este dispositivo presenta una alternativa más eficaz en lo referente a la uniformidad de la distribución, lo que genera una disminución en las dosis aplicadas beneficiando las condiciones de seguridad del operario y el impacto sobre el medio ambiente.