927 resultados para Consensual mechanisms of dispute resolution
Resumo:
Simultaneous presence of several tramp ant species of relatively recent introduction on a remote island is an excellent opportunity to study competition mechanisms that lead to the establishment of invasive species. Using attractive food baits we collected 14 ant species among which 10 are well-known tramp species. The most important change between 1996-97 and 2003 is the spread of the tropical fire ant Solenopsis geminata at the detriment of Tetramorium simillimum, suggesting that the colonization process on Floreana is still very dynamic. The follow-up of 400 food baits for 21 hours permitted us to calculate indices of competition abilities for 11 species, revealing distinct strategies. The two small tramp species Monomorium floricola and Tapinoma melanocephalum are typically opportunists when large-sized Odontomachus bauri (possibly native species) and Camponotus macilentus (endemic species) are good interference competitors, out-competing other species at food baits. Dominant species S. geminata and Monomorium destructor reach high scores for all indices due to their high abundance.
Resumo:
The three isotypes of peroxisome proliferator-activated receptors (PPARs), PPARalpha, beta/delta and gamma, are ligand-inducible transcription factors that belong to the nuclear hormone receptor family. PPARs are implicated in the control of inflammatory responses and in energy homeostasis and thus, can be defined as metabolic and anti-inflammatory transcription factors. They exert their anti-inflammatory effects by inhibiting the induction of pro-inflammatory cytokines, adhesion molecules and extracellular matrix proteins or by stimulating the production of anti-inflammatory molecules. Furthermore, PPARs modulate the proliferation, differentiation and survival of immune cells including macrophages, B cells and T cells. This review discusses the molecular mechanisms by which PPARs and their ligands modulate the inflammatory response. In addition, it presents recent developments implicating PPAR specific ligands in potential treatments of inflammation-related diseases, such as atherosclerosis, inflammatory bowel diseases, Parkinson's and Alzheimer's diseases.
Resumo:
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which - apposition of the dorsal and ventral wing sheets during metamorphosis - is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Resumo:
Synaptic plasticity involves a complex molecular machinery with various protein interactions but it is not yet clear how its components give rise to the different aspects of synaptic plasticity. Here we ask whether it is possible to mathematically model synaptic plasticity by making use of known substances only. We present a model of a multistable biochemical reaction system and use it to simulate the plasticity of synaptic transmission in long-term potentiation (LTP) or long-term depression (LTD) after repeated excitation of the synapse. According to our model, we can distinguish between two phases: first, a "viscosity" phase after the first excitation, the effects of which like the activation of NMDA receptors and CaMKII fade out in the absence of further excitations. Second, a "plasticity" phase actuated by an identical subsequent excitation that follows after a short time interval and causes the temporarily altered concentrations of AMPA subunits in the postsynaptic membrane to be stabilized. We show that positive feedback is the crucial element in the core chemical reaction, i.e. the activation of the short-tail AMPA subunit by NEM-sensitive factor, which allows generating multiple stable equilibria. Three stable equilibria are related to LTP, LTD and a third unfixed state called ACTIVE. Our mathematical approach shows that modeling synaptic multistability is possible by making use of known substances like NMDA and AMPA receptors, NEM-sensitive factor, glutamate, CaMKII and brain-derived neurotrophic factor. Furthermore, we could show that the heteromeric combination of short- and long-tail AMPA receptor subunits fulfills the function of a memory tag.
Resumo:
The 26S proteasome constitutes an essential degradation apparatus involved in the consistent recycling of misfolded and damaged proteins inside cells. The aberrant activation of the proteasome has been widely observed in various types of cancers and implicated in the development and progression of carcinogenesis. In the era of targeted therapies, the clinical use of proteasome inhibitors necessitates a better understanding of the molecular mechanisms of cell death responsible for their cytotoxic action, which are reviewed here in the context of sensitization of malignant gliomas, a tumor type particularly refractory to conventional treatments.
Resumo:
Abstract Purpose: To test the hypothesis that simultaneous closure of at least 2 independent vascular territories supplying the spinal cord and/or prolonged hypotension may be associated with symptomatic spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR). Methods: A pattern matching algorithm was used to develop a risk model for symptomatic SCI using a prospective 63-patient single-center cohort to test the positive predictive value (PPV) of prolonged intraoperative hypotension and/or simultaneous closure of at least 2 of 4 the vascular territories supplying the spinal cord (left subclavian, intercostal, lumbar, and hypogastric arteries). This risk model was then applied to data extracted from the multicenter European Registry on Endovascular Aortic Repair Complications (EuREC). Between 2002 and 2010, the 19 centers participating in EuREC reported 38 (1.7%) cases of symptomatic spinal cord ischemia among the 2235 patients in the database. Results: In the single-center cohort, direct correlations were seen between the occurrence of symptomatic SCI and both prolonged intraoperative hypotension (PPV 1.00, 95% CI 0.22 to 1.00, p = 0.04) and simultaneous closure of at least 2 independent spinal cord vascular territories (PPV 0.67, 95% CI 0.24 to 0.91, p = 0.005). Previous closure of a single vascular territory was not associated with an increased risk of symptomatic spinal cord ischemia (PPV 0.07, 95% CI 0.01 to 0.16, p = 0.56). The combination of prolonged hypotension and simultaneous closure of at least 2 territories exhibited the strongest association (PPV 0.75, 95% CI 0.38 to 0.75, p<0.0001). Applying the model to the entire EuREC cohort found an almost perfect agreement between the predicted and observed risk factors (kappa 0.77, 95% CI 0.65 to 0.90). Conclusion: Extensive coverage of intercostal arteries alone by a thoracic stent-graft is not associated with symptomatic SCI; however, simultaneous closure of at least 2 vascular territories supplying the spinal cord is highly relevant, especially in combination with prolonged intraoperative hypotension. As such, these results further emphasize the need to preserve the left subclavian artery during TEVAR.
Resumo:
Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
Introduction: Les particules de HDL (High Density Lipoproteins) ont des fonctions très diverses notamment anti-inflamatoires, anti-apoptotiques ou anti-oxydatives. Chez les patients diabétiques, les niveaux de HDLs sont bas, les prédisposants ainsi à un risque élévé à développer une maladie cardiovasculaire. Sachant que le s HDLs ont également un effet protecteur sur la cellule beta, le but de cette étude est dinvestigué les mécanismes moléculaires de cette protection contre le stress du réticulum, stress qui contriubue au développement du diabéte de type 2. Résultats: La thapsigargine et la tunicamycine induisent lapoptose en induisant un stress dans le réticulum endoplasmique (RE) par un mauvais repliement des protéines dans le RE, ainsi que l'activation de l'UPR (Unfolded Protein Respons) avec trois voies communes de signalisation intracellulaire (IRE1, PREK et ATF6). Ces voix veillent tout d'abord à augmenter la capacité de repliement des protéines et le cas échéant à lapoptose. Nos résultats montrent que les HDLs sont capable d'inhuber lapoptose induite par la thapsigargine et la tunicamycine dans les MIN6. Dans le cas du traitement avec la thapsigargine, plusieurs marqueurs des voix UPR sont bloqués en présence des HDLs, suggérant que l'effet anti-apoptotiques des HDLs s'exerce au niveau ou en amont du RE. Les HDLS par contre ne bloquent par la sortie de calcium du RE induite par la thapsigargine ce qui indique que les HDLs n'interfèrent pas avec l'action de cette drogue sur sa cible (SERCA). Dans le cas de la la tunicamycine, les HDLs ne bloquent pas, ou très légèrement, l'activation des voix de l'UPR. La protection induite par les HDLs contre la mort engendrée par la tunicamycine s'sexerce dont apparement en aval de l'UPR et reste à être déterminer. Conclusions: Nos données suggérent que les HDLs sont capable de protéger la cellule beta contre le stress du réticulum mais apparement de façon différente selon les modalités d'inductions de ce stress.
Resumo:
SUMMARYInsulin secretion from pancreatic beta-cells is a fundamental condition for the maintenance of blood glucose levels. During the last decades, important components of the molecular machinery controlling hormone release have been characterized. My PhD thesis was dedicated to the study of new signaling pathways regulating insulin exocytosis and in particular to the role of small monomelic guanine triphosphatase or GTPases controlling the last events of hormone release.The first part of my thesis focused on Ras-like (Ral) RalA and RalB proteins. We investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed their impact on different steps of the insulin-secretory process. Our results have shown that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-IE cells by RNA interference led to a decrease in secretagogue-induced hormone release. The activation of the GTPase, followed by FRET imaging, is triggered by increases in intracellular Ca and cAMP. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane, detected by TIRF microscopy and with strong impairment in PLD1 activation in response to secretagogues. RalA was found to be activated by the exchange factor RalGDS, which regulates hormone secretion induced by secretagogues and the docking step of insulin-containing granules at the plasma membrane. In the second part of this work we have shown that a member of the Rab family, Rab37, is present on insulin-containing secretory granules of pancreatic beta-cells. In addition, our experiments have suggested that Rab37 is required to obtain an optimal insulin secretory response induced by secretogogues and is important for the docking step of insulin-containing granules at the plasma membrane.
Resumo:
Mutations of G protein-coupled receptors can increase their constitutive (agonist-independent) activity. Some of these mutations have been artificially introduced by site-directed mutagenesis, others occur spontaneously in human diseases. The analysis of the constitutively active G protein-coupled receptors has provided important informations about the molecular mechanisms underlying receptor activation and drug action.