884 resultados para Connectivity,Connected Car,Big Data,KPI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an overview of the MELODIES project, which is developing new data-intensive environmental services based on data from Earth Observation satellites, government databases, national and European agencies and more. We focus here on the capabilities and benefits of the project’s “technical platform”, which applies cloud computing and Linked Data technologies to enable the development of these services, providing flexibility and scalability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Environmental Data Abstraction Library provides a modular data management library for bringing new and diverse datatypes together for visualisation within numerous software packages, including the ncWMS viewing service, which already has very wide international uptake. The structure of EDAL is presented along with examples of its use to compare satellite, model and in situ data types within the same visualisation framework. We emphasize the value of this capability for cross calibration of datasets and evaluation of model products against observations, including preparation for data assimilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining is a relatively new field of research that its objective is to acquire knowledge from large amounts of data. In medical and health care areas, due to regulations and due to the availability of computers, a large amount of data is becoming available [27]. On the one hand, practitioners are expected to use all this data in their work but, at the same time, such a large amount of data cannot be processed by humans in a short time to make diagnosis, prognosis and treatment schedules. A major objective of this thesis is to evaluate data mining tools in medical and health care applications to develop a tool that can help make rather accurate decisions. In this thesis, the goal is finding a pattern among patients who got pneumonia by clustering of lab data values which have been recorded every day. By this pattern we can generalize it to the patients who did not have been diagnosed by this disease whose lab values shows the same trend as pneumonia patients does. There are 10 tables which have been extracted from a big data base of a hospital in Jena for my work .In ICU (intensive care unit), COPRA system which is a patient management system has been used. All the tables and data stored in German Language database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This occasional paper examines the experiences of three leading global centres of the ICT industry – India, Silicon Valley, and Estonia – to reflect on how the lessons of these models can be applied to the context of countries in the Caribbean region.Several sectors of the technology industry are considered in relation to the suitability for their establishment in the Caribbean. Animation is an area that is showing encouraging signs of development in several countries, and which offers some promise to provide a significant source of employment in the region. However, the global market for animation production is likely to become increasingly competitive, as improved technology has reduced barriers to entry into the industry not only in the Caribbean, but around the world. The region’s animation industry will need to move swiftly up the value chain if it is to avoid the downsides of being caught in an increasingly commoditized market. Mobile applications development has also been widely a heralded industry for the Caribbean. However, the market for consumer-oriented smartphone applications has matured very quickly, and is now a very difficult sector in which to compete. Caribbean mobile developers would be better served to focus on creating applications to suit the needs of regional industries and governments, rather than attempting to gain notice in over-saturated consumer marketplaces such as the iTunes App Store and Google Play. Another sector considered for the Caribbean is “big data” analysis. This area holds significant potential for growth in coming years, but the Caribbean, which is generally considered to be a datapoor region, currently lacks a sufficient base of local customers to form a competitive foundation for such an industry. While a Caribbean big data industry could plausibly be oriented toward outsourcing, that orientation would limit positive externalities from the sector, and benefits from its establishment would largely accrue only to a relatively small number of direct participants in the industry. Instead, development in the big data sector should be twinned with the development of products to build a regional customer base for the industry. The region has pressing needs in areas such as disaster risk reduction, water resource management, and support for agricultural production. Development of big data solutions – and other technology products – to address areas such as these could help to establish niche industries that both support the needs of local populations, and provide viable opportunities for the export of higher-value products and services to regions of the world with similar needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the Big Data development and the growth of cloud computing and Internet of Things, data centers have been multiplying in Brazil and the rest of the world. Designing and running this sites in an efficient way has become a necessary challenge and to do so, it's essential a better understanding of its infrastructure. Thus, this paper presents a bibliography study using technical concepts in order to understand the specific needs related to this environment and the best forms address them. It discusses the data center infrastructure main systems, methods to improve their energy efficiency and their future trends

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the Big Data development and the growth of cloud computing and Internet of Things, data centers have been multiplying in Brazil and the rest of the world. Designing and running this sites in an efficient way has become a necessary challenge and to do so, it's essential a better understanding of its infrastructure. Thus, this paper presents a bibliography study using technical concepts in order to understand the specific needs related to this environment and the best forms address them. It discusses the data center infrastructure main systems, methods to improve their energy efficiency and their future trends

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this research study is to use neural mass models to assess the effect of various connectivity patterns in cortical EEG power spectral density (PSD), and investigate the possibility to derive connectivity circuits from EEG data. To this end, two different models have been built. In the first model an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each one exhibiting a unimodal spectrum, at low, medium or high frequency. Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. Subsequent studies demonstrated that a single population can exhibit many different simultaneous rhythms, provided that some of these come from external sources (for instance, from remote regions). For this reason in the second model an individual ROI is simulated only with a single population. Both models have been validated by comparing the simulated power spectral density with that computed in some cortical regions during cognitive and motor tasks. Another research study is focused on multisensory integration of tactile and visual stimuli in the representation of the near space around the body (peripersonal space). This work describes an original neural network to simulate representation of the peripersonal space around the hands, in basal conditions and after training with a tool used to reach the far space. The model is composed of three areas for each hand, two unimodal areas (visual and tactile) connected to a third bimodal area (visual-tactile), which is activated only when a stimulus falls within the peripersonal space. Results show that the peripersonal space, which includes just a small visual space around the hand in normal conditions, becomes elongated in the direction of the tool after training, thanks to a reinforcement of synapses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo del clustering è quindi quello di individuare strutture nei dati significative, ed è proprio dalla seguente definizione che è iniziata questa attività di tesi , fornendo un approccio innovativo ed inesplorato al cluster, ovvero non ricercando la relazione ma ragionando su cosa non lo sia. Osservando un insieme di dati ,cosa rappresenta la non relazione? Una domanda difficile da porsi , che ha intrinsecamente la sua risposta, ovvero l’indipendenza di ogni singolo dato da tutti gli altri. La ricerca quindi dell’indipendenza tra i dati ha portato il nostro pensiero all’approccio statistico ai dati , in quanto essa è ben descritta e dimostrata in statistica. Ogni punto in un dataset, per essere considerato “privo di collegamenti/relazioni” , significa che la stessa probabilità di essere presente in ogni elemento spaziale dell’intero dataset. Matematicamente parlando , ogni punto P in uno spazio S ha la stessa probabilità di cadere in una regione R ; il che vuol dire che tale punto può CASUALMENTE essere all’interno di una qualsiasi regione del dataset. Da questa assunzione inizia il lavoro di tesi, diviso in più parti. Il secondo capitolo analizza lo stato dell’arte del clustering, raffrontato alla crescente problematica della mole di dati, che con l’avvento della diffusione della rete ha visto incrementare esponenzialmente la grandezza delle basi di conoscenza sia in termini di attributi (dimensioni) che in termini di quantità di dati (Big Data). Il terzo capitolo richiama i concetti teorico-statistici utilizzati dagli algoritimi statistici implementati. Nel quarto capitolo vi sono i dettagli relativi all’implementazione degli algoritmi , ove sono descritte le varie fasi di investigazione ,le motivazioni sulle scelte architetturali e le considerazioni che hanno portato all’esclusione di una delle 3 versioni implementate. Nel quinto capitolo gli algoritmi 2 e 3 sono confrontati con alcuni algoritmi presenti in letteratura, per dimostrare le potenzialità e le problematiche dell’algoritmo sviluppato , tali test sono a livello qualitativo , in quanto l’obbiettivo del lavoro di tesi è dimostrare come un approccio statistico può rivelarsi un’arma vincente e non quello di fornire un nuovo algoritmo utilizzabile nelle varie problematiche di clustering. Nel sesto capitolo saranno tratte le conclusioni sul lavoro svolto e saranno elencati i possibili interventi futuri dai quali la ricerca appena iniziata del clustering statistico potrebbe crescere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Tesi tratta i concetti di Privacy e Protezione dei Dati personali, contestualizzandone il quadro normativo e tecnologico con particolare riferimento ai contesti emergenti rappresentati – per un verso – dalla proposta di nuovo Regolamento generale sulla protezione dei dati personali (redatto dal Parlamento Europeo e dal Consiglio dell’Unione Europea), – per un altro – dalla metodologia di progettazione del Privacy by Design e – per entrambi – dalla previsione di un nuovo attore: il responsabile per la protezione dei dati personali (Privacy Officer). L’elaborato si articola su tre parti oltre introduzione, conclusioni e riferimenti bibliografici. La prima parte descrive il concetto di privacy e le relative minacce e contromisure (tradizionali ed emergenti) con riferimento ai contesti di gestione (aziendale e Big Data) e al quadro normativo vigente. La seconda Parte illustra in dettaglio i principi e le prassi del Privacy by Design e la figura del Privacy Officer formalmente riconosciuta dal novellato giuridico. La terza parte illustra il caso di studio nel quale vengono analizzate tramite una tabella comparativa minacce e contromisure rilevabili in un contesto aziendale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sviluppo e analisi di un dataset campione, composto da circa 3 mln di entry ed estratto da un data warehouse di informazioni riguardanti il consumo energetico di diverse smart home.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The era of big data opens up new opportunities in personalised medicine, preventive care, chronic disease management and in telemonitoring and managing of patients with implanted devices. The rich data accumulating within online services and internet companies provide a microscope to study human behaviour at scale, and to ask completely new questions about the interplay between behavioural patterns and health. In this paper, we shed light on a particular aspect of data-driven healthcare: autonomous decision-making. We first look at three examples where we can expect data-driven decisions to be taken autonomously by technology, with no or limited human intervention. We then discuss some of the technical and practical challenges that can be expected, and sketch the research agenda to address them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal adjustment of brain networks allows the biased processing of information in response to the demand of environments and is therefore prerequisite for adaptive behaviour. It is widely shown that a biased state of networks is associated with a particular cognitive process. However, those associations were identified by backward categorization of trials and cannot provide a causal association with cognitive processes. This problem still remains a big obstacle to advance the state of our field in particular human cognitive neuroscience. In my talk, I will present two approaches to address the causal relationships between brain network interactions and behaviour. Firstly, we combined connectivity analysis of fMRI data and a machine leaning method to predict inter-individual differences of behaviour and responsiveness to environmental demands. The connectivity-based classification approach outperforms local activation-based classification analysis, suggesting that interactions in brain networks carry information of instantaneous cognitive processes. Secondly, we have recently established a brand new method combining transcranial alternating current stimulation (tACS), transcranial magnetic stimulation (TMS), and EEG. We use the method to measure signal transmission between brain areas while introducing extrinsic oscillatory brain activity and to study causal association between oscillatory activity and behaviour. We show that phase-matched oscillatory activity creates the phase-dependent modulation of signal transmission between brain areas, while phase-shifted oscillatory activity blunts the phase-dependent modulation. The results suggest that phase coherence between brain areas plays a cardinal role in signal transmission in the brain networks. In sum, I argue that causal approaches will provide more concreate backbones to cognitive neuroscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.