997 resultados para Condensed Tannins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process. In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components. In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines. To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated. The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation. During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality. Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants. Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feeding trial was conducted with 790-lb yearling heifers fed an average of 121 days to evaluate replacing cracked corn and supplemental urea with wet distillers grains or condensed distillers solubles. Wet distillers grains were evaluated at 16%, 28% and 40% of diet dry matter. Condensed distillers solubles were added at 6.5% of diet dry matter. Control diets were supplemented with urea or a combination of urea and soybean meal. Feeding 16% wet distillers grains or condensed distillers solubles increased gain of heifers compared with those fed the control urea diet. Increasing the amount of wet distillers grains tended to decrease feed intake and reduce gain. The calculated apparent net energy based on gain of the heifers was greatest for the heifers fed 16% wet distillers grains. The apparent energy of the wet distillers grains declined as the quantity fed was increased. The calculated net energy values were 1.09 and 1.35 Mcal/lb of dry matter for the average of the three concentrations of wet distillers grains and condensed distillers solubles. These results confirm the high energy values of wet distillers grains relative to cracked corn as observed in a previous steer feeding trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A feeding trial was conducted with 860-lb yearling steers fed 121 days to evaluate Condensed Porcine Solubles (Porcine Solubles) as a source of supplemental nitrogen for finishing cattle. Diets containing 5% soybean meal, 1.46% urea, and 2% or 4% Porcine Solubles were compared. When first offered, cattle did not want to consume feed containing the Porcine Solubles. Following adaptation, feed containing up to 4% Porcine Solubles was readily consumed. During the first 56 days, steers fed soybean meal gained faster and were more efficient than steers fed urea or Porcine Solubles. At the end of the trial there were no differences among the nitrogen supplements in feed intake, gain, or feed conversion. There were no significant differences in carcass weight or measures of carcass quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A statistical mechanics view leads to the conclusion that polar molecules allowed to populate a degree of freedom for orientational disorder in a condensed phase thermalize into a bi-polar state featuring zero net polarity. In cases of orientational disorder polar order of condensed molecular matter can only exist in corresponding sectors of opposite average polarities. Channel type inclusion compounds, single component molecular crystals, solid solutions, optically anomalous crystals, inorganic ionic crystals, biomimetic crystals and biological tissues investigated by scanning pyroelectric and phase sensitive second harmonic generation microscopy all showed domains of opposite polarities in their final grown state. For reported polar molecular crystal structures it is assumed that kinetic hindrance along one direction of the polar axis is preventing the formation of a bi-polar state, thus allowing for a kinetically controlled mono-domain state. In this review we summarize theoretical and experimental findings leading to far reaching conclusions on the polar state of solid molecular matter. “… no stationary state … of a system has an electrical dipole moment.” P. W. Anderson, Science, 1972, 177, 393.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar molecular crystals seem to contradict a quantum mechanical statement, according to which no stationary state of a system features a permanent electrical polarization. By stationary we understand here an ensemble for which thermal averaging applies. In the language of statistical mechanics we have thus to ask for the thermal expectation value of the polarization in molecular crystals. Nucleation aggregates and growing crystal surfaces can provide a single degree of freedom for polar molecules required to average the polarization. By means of group theoretical reasoning and Monte Carlo simulations we show that such systems thermalize into a bi-polar state featuring zero bulk polarity. A two domain, i.e. bipolar state is obtained because boundaries are setting up opposing effective electrical fields. Described phenomena can be understood as a process of partial ergodicity-restoring. Experimentally, a bi-polar state of molecular crystals was demonstrated using phase sensitive second harmonic generation and scanning pyroelectric microscopy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of premature chromosome condensation, resulting from fusion between mitotic and interphase cells, includes dissolution of the interphase nuclear framework, thus allowing a direct visualization of interphase chromosomes. Light microscope morphology of prematurely condensed chromosomes (PCC) from synchronized HeLa cells supports the model of an interphase "chromosome condensation cycle". PCC are increasingly attenuated as cells progress through G(,1). A maximum degree of decondensation is observed at active sites of DNA replication during S phase, and a condensed morphology is rapidly resumed following completion of replication of a chromosome segment.^ To permit ultrastructural and biochemical studies of PCC, a procedure was developed to induce premature chromosome condensation at high frequency. This was achieved by polyethylene glycol (PEG)-mediated fusion of a dense monolayer of mitotic and interphase cells induced by centrifugation onto lectin-coated culture dishes. Using this method, PCC induction frequencies of 60-90% are routinely obtained.^ Scanning electron microscope analysis of PCC spreads revealed that the extension of PCC during progression through G(,1) is accompanied by a transition of the basic 30 nm chromatin fiber from tightly packed looping fibers to extended longitudinal fibers. Sites of active DNA replication is S-PCC were indicated to be organized a single longitudinal fibers. Following replication of a chromosome segment, a rapid reorganization from the extended longitudinal fiber to packed looping fibers occurs. The postreplication maturation process appears to include the assembly of a chromosome core consisting of multiple longitudinal fibers.^ The role of histone H1 phosphorylation in PCC formation was investigated by acidurea polyacrylamide gel electrophoresis of total histone extracted from metaphase chromosomes and PCC following high frequency fusion. This investigation failed to demonstrate an extensive phosphorylation of H1 associated with PCC formation. However, significant dephosphorylation of superphosphorylated metaphase chromosome H1 was observed, indicating that interphase H1-phosphatase activity is dominant over metaphase H1 kinase activity. These observations provide evidence against models suggesting a role for H1 superphosphorylation in triggering mitotic condensation of chromosomes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetochores are complex macromolecular structures that link mitotic chromosomes to spindle microtubules. Although a small number of kinetochore components have been identified, including the kinesins CENP-E and XKCM1 as well as cytoplasmic dynein, neither how these and other proteins are organized to produce a kinetochore nor their exact functions within this structure are understood. For this reason, we have developed an assay that allows kinetochore components to assemble onto discrete foci on in vitro-condensed chromosomes. The source of the kinetochore components is a clarified cell extract from Xenopus eggs that can be fractionated or immunodepleted of individual proteins. Kinetochore assembly in these clarified extracts requires preincubating the substrate sperm nuclei in an extract under low ATP conditions. Immunodepletion of XKCM1 from the extracts prevents the localization of kinetochore-associated XKCM1 without affecting the targeting of CENP-E and cytoplasmic dynein or the binding of monomeric tubulin to the kinetochore. Extension of this assay for the analysis of other components should help to dissect the protein–protein interactions involved in kinetochore assembly and function.