934 resultados para Computer-aided diagnosis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Computer-Aided Diagnosis-based schemes in mammography analysis each module is interconnected, which directly affects the system operation as a whole. The identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest for further image segmentation. This study aims to evaluate the performance of three techniques in classifying regions of interest as containing masses or without masses (without clinical findings), as well as the main contribution of this work is to introduce the Optimum-Path Forest (OPF) classifier in this context, which has never been done so far. Thus, we have compared OPF against with two sorts of neural networks in a private dataset composed by 120 images: Radial Basis Function and Multilayer Perceptron (MLP). Texture features have been used for such purpose, and the experiments have demonstrated that MLP networks have been slightly better than OPF, but the former is much faster, which can be a suitable tool for real-time recognition systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a study of the anatomical features of the cardiac system and a three-dimensional model of the different tunics that comprise the heart wall, for processing and quality control of radiological images. The structures are built by the layer overlapping method, where a layer can be understood as a slice of the three-dimensional object. The pericardium, myocardium and endocardium were represented with three-dimensional cylinders and hexagons. The spatial arrangement of the cardiac system is determined by an background image of a real model, which values are defined according to the shape of the region and on the anatomical patients characteristics. The results are significant, considering the anatomical structures details, as well as the representation of the thicknesses of the regions of the heart wall. The validation of the anatomical model was accomplished through comparisons with dimensions obtained from a real model and allows verifying that the model is appropriate. The degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the diseases on the quality of the images, as well as on the performance of the Computer-Aided Diagnosis (CAD).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present study was to investigate whether serous fluids, blood, cerebrospinal fluid (CSF), and putrefied CSF can be characterized and differentiated in synthetically calculated magnetic resonance (MR) images based on their quantitative T 1, T 2, and proton density (PD) values. Images from 55 postmortem short axis cardiac and 31 axial brain 1.5-T MR examinations were quantified using a quantification sequence. Serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF were analyzed for their mean T 1, T 2, and PD values. Body core temperature was measured during the MRI scans. The fluid-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot as well as in statistical analysis, the quantitative T 1, T 2 and PD values of serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF could be well differentiated from each other. The quantitative T 1 and T 2 values were temperature-dependent. Correction of quantitative values to a temperature of 37 °C resulted in significantly better discrimination between all investigated fluid mediums. We conclude that postmortem 1.5-T MR quantification is feasible to discriminate between blood, serous fluids, CSF, and putrefied CSF. This finding provides a basis for the computer-aided diagnosis and detection of fluids and hemorrhages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The graphical user interface (GUI) are all graphic elements that help to communicate with a system. The design of a GUI allow to land the central idea of a draft information technology. Today technology has become one of the largest and most useful tools to automate and facilitate processes for that reason fit into any kind of productive sectors, for example, in the health sector. The CAD systems (Systems Computer Aided Diagnosis) are the type of technology used in the health sector, in order to automate online modular learning environment with a fast placed in service. In the present paper the use of a Learning Management Systems (LMS) as continuous education tool is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is the most common of malignant tumors, with 1.59 million new cases worldwide in 2012. Early detection is the main factor to determine the survival of patients affected by this disease. Furthermore, the correct classification is important to define the most appropriate therapeutic approach as well as suggest the prognosis and the clinical disease evolution. Among the exams used to detect lung cancer, computed tomography have been the most indicated. However, CT images are naturally complex and even experts medical are subject to fault detection or classification. In order to assist the detection of malignant tumors, computer-aided diagnosis systems have been developed to aid reduce the amount of false positives biopsies. In this work it was developed an automatic classification system of pulmonary nodules on CT images by using Artificial Neural Networks. Morphological, texture and intensity attributes were extracted from lung nodules cut tomographic images using elliptical regions of interest that they were subsequently segmented by Otsu method. These features were selected through statistical tests that compare populations (T test of Student and U test of Mann-Whitney); from which it originated a ranking. The features after selected, were inserted in Artificial Neural Networks (backpropagation) to compose two types of classification; one to classify nodules in malignant and benign (network 1); and another to classify two types of malignancies (network 2); featuring a cascade classifier. The best networks were associated and its performance was measured by the area under the ROC curve, where the network 1 and network 2 achieved performance equal to 0.901 and 0.892 respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2016.