916 resultados para Computer Science Applications
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Les jeux de policiers et voleurs sont étudiés depuis une trentaine d’années en informatique et en mathématiques. Comme dans les jeux de poursuite en général, des poursuivants (les policiers) cherchent à capturer des évadés (les voleurs), cependant ici les joueurs agissent tour à tour et sont contraints de se déplacer sur une structure discrète. On suppose toujours que les joueurs connaissent les positions exactes de leurs opposants, autrement dit le jeu se déroule à information parfaite. La première définition d’un jeu de policiers-voleurs remonte à celle de Nowakowski et Winkler [39] et, indépendamment, Quilliot [46]. Cette première définition présente un jeu opposant un seul policier et un seul voleur avec des contraintes sur leurs vitesses de déplacement. Des extensions furent graduellement proposées telles que l’ajout de policiers et l’augmentation des vitesses de mouvement. En 2014, Bonato et MacGillivray [6] proposèrent une généralisation des jeux de policiers-voleurs pour permettre l’étude de ceux-ci dans leur globalité. Cependant, leur modèle ne couvre aucunement les jeux possédant des composantes stochastiques tels que ceux dans lesquels les voleurs peuvent bouger de manière aléatoire. Dans ce mémoire est donc présenté un nouveau modèle incluant des aspects stochastiques. En second lieu, on présente dans ce mémoire une application concrète de l’utilisation de ces jeux sous la forme d’une méthode de résolution d’un problème provenant de la théorie de la recherche. Alors que les jeux de policiers et voleurs utilisent l’hypothèse de l’information parfaite, les problèmes de recherches ne peuvent faire cette supposition. Il appert cependant que le jeu de policiers et voleurs peut être analysé comme une relaxation de contraintes d’un problème de recherche. Ce nouvel angle de vue est exploité pour la conception d’une borne supérieure sur la fonction objectif d’un problème de recherche pouvant être mise à contribution dans une méthode dite de branch and bound.
Resumo:
Securing e-health applications in the context of Internet of Things (IoT) is challenging. Indeed, resources scarcity in such environment hinders the implementation of existing standard based protocols. Among these protocols, MIKEY (Multimedia Internet KEYing) aims at establishing security credentials between two communicating entities. However, the existing MIKEY modes fail to meet IoT specificities. In particular, the pre-shared key mode is energy efficient, but suffers from severe scalability issues. On the other hand, asymmetric modes such as the public key mode are scalable, but are highly resource consuming. To address this issue, we combine two previously proposed approaches to introduce a new hybrid MIKEY mode. Indeed, relying on a cooperative approach, a set of third parties is used to discharge the constrained nodes from heavy computational operations. Doing so, the pre-shared mode is used in the constrained part of the network, while the public key mode is used in the unconstrained part of the network. Preliminary results show that our proposed mode is energy preserving whereas its security properties are kept safe.
Resumo:
Nowadays there is almost no crime committed without a trace of digital evidence, and since the advanced functionality of mobile devices today can be exploited to assist in crime, the need for mobile forensics is imperative. Many of the mobile applications available today, including internet browsers, will request the user’s permission to access their current location when in use. This geolocation data is subsequently stored and managed by that application's underlying database files. If recovered from a device during a forensic investigation, such GPS evidence and track points could hold major evidentiary value for a case. The aim of this paper is to examine and compare to what extent geolocation data is available from the iOS and Android operating systems. We focus particularly on geolocation data recovered from internet browsing applications, comparing the native Safari and Browser apps with Google Chrome, downloaded on to both platforms. All browsers were used over a period of several days at various locations to generate comparable test data for analysis. Results show considerable differences not only in the storage locations and formats, but also in the amount of geolocation data stored by different browsers and on different operating systems.
Resumo:
In this dissertation I draw a connection between quantum adiabatic optimization, spectral graph theory, heat-diffusion, and sub-stochastic processes through the operators that govern these processes and their associated spectra. In particular, we study Hamiltonians which have recently become known as ``stoquastic'' or, equivalently, the generators of sub-stochastic processes. The operators corresponding to these Hamiltonians are of interest in all of the settings mentioned above. I predominantly explore the connection between the spectral gap of an operator, or the difference between the two lowest energies of that operator, and certain equilibrium behavior. In the context of adiabatic optimization, this corresponds to the likelihood of solving the optimization problem of interest. I will provide an instance of an optimization problem that is easy to solve classically, but leaves open the possibility to being difficult adiabatically. Aside from this concrete example, the work in this dissertation is predominantly mathematical and we focus on bounding the spectral gap. Our primary tool for doing this is spectral graph theory, which provides the most natural approach to this task by simply considering Dirichlet eigenvalues of subgraphs of host graphs. I will derive tight bounds for the gap of one-dimensional, hypercube, and general convex subgraphs. The techniques used will also adapt methods recently used by Andrews and Clutterbuck to prove the long-standing ``Fundamental Gap Conjecture''.
Resumo:
In this thesis, we present a quantitative approach using probabilistic verification techniques for the analysis of reliability, availability, maintainability, and safety (RAMS) properties of satellite systems. The subject of our research is satellites used in mission critical industrial applications. A strong case for using probabilistic model checking to support RAMS analysis of satellite systems is made by our verification results. This study is intended to build a foundation to help reliability engineers with a basic background in model checking to apply probabilistic model checking to small satellite systems. We make two major contributions. One of these is the approach of RAMS analysis to satellite systems. In the past, RAMS analysis has been extensively applied to the field of electrical and electronics engineering. It allows system designers and reliability engineers to predict the likelihood of failures from the indication of historical or current operational data. There is a high potential for the application of RAMS analysis in the field of space science and engineering. However, there is a lack of standardisation and suitable procedures for the correct study of RAMS characteristics for satellite systems. This thesis considers the promising application of RAMS analysis to the case of satellite design, use, and maintenance, focusing on its system segments. Data collection and verification procedures are discussed, and a number of considerations are also presented on how to predict the probability of failure. Our second contribution is leveraging the power of probabilistic model checking to analyse satellite systems. We present techniques for analysing satellite systems that differ from the more common quantitative approaches based on traditional simulation and testing. These techniques have not been applied in this context before. We present the use of probabilistic techniques via a suite of detailed examples, together with their analysis. Our presentation is done in an incremental manner: in terms of complexity of application domains and system models, and a detailed PRISM model of each scenario. We also provide results from practical work together with a discussion about future improvements.
Resumo:
This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.
Resumo:
Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.
Resumo:
The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.