833 resultados para Computational Intelligence


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task allocation in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. The problem is constrained so that agents are penalised for switching mail types. When an agent process a mail batch of different type to the previous one, it must undergo a change-over, with repeated change-overs rendering the agent inactive. The efficiency (average amount of mail retrieved), and the flexibility (ability of the agents to react to changes in the environment) are investigated both in static and dynamic environments and with respect to sudden changes. New rules for mail selection and specialisation are proposed and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a evolutionary algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents (especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, more than 16 million citations of published articles in biomedical domain are available in the MEDLINE database. These articles describe the new discoveries which accompany a tremendous development in biomedicine during the last decade. It is crucial for biomedical researchers to retrieve and mine some specific knowledge from the huge quantity of published articles with high efficiency. Researchers have been engaged in the development of text mining tools to find knowledge such as protein-protein interactions, which are most relevant and useful for specific analysis tasks. This chapter provides a road map to the various information extraction methods in biomedical domain, such as protein name recognition and discovery of protein-protein interactions. Disciplines involved in analyzing and processing unstructured-text are summarized. Current work in biomedical information extracting is categorized. Challenges in the field are also presented and possible solutions are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many automated negotiation models have been developed to solve the conflict in many distributed computational systems. However, the problem of finding win-win outcome in multiattribute negotiation has not been tackled well. To address this issue, based on an evolutionary method of multiobjective optimization, this paper presents a negotiation model that can find win-win solutions of multiple attributes, but needs not to reveal negotiating agents' private utility functions to their opponents or a third-party mediator. Moreover, we also equip our agents with a general type of utility functions of interdependent multiattributes, which captures human intuitions well. In addition, we also develop a novel time-dependent concession strategy model, which can help both sides find a final agreement among a set of win-win ones. Finally, lots of experiments confirm that our negotiation model outperforms the existing models developed recently. And the experiments also show our model is stable and efficient in finding fair win-win outcomes, which is seldom solved in the existing models. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The practice of evidence-based medicine involves consulting documents from repositories such as Scopus, PubMed, or the Cochrane Library. The most common approach for presenting retrieved documents is in the form of a list, with the assumption that the higher a document is on a list, the more relevant it is. Despite this list-based presentation, it is seldom studied how physicians perceive the importance of the order of documents presented in a list. This paper describes an empirical study that elicited and modeled physicians' preferences with regard to list-based results. Preferences were analyzed using a GRIP method that relies on pairwise comparisons of selected subsets of possible rank-ordered lists composed of 3 documents. The results allow us to draw conclusions regarding physicians' attitudes towards the importance of having documents ranked correctly on a result list, versus the importance of retrieving relevant but misplaced documents. Our findings should help developers of clinical information retrieval applications when deciding how retrieved documents should be presented and how performance of the application should be assessed. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supply chain formation is the process by which a set of producers within a network determine the subset of these producers able to form a chain to supply goods to one or more consumers at the lowest cost. This problem has been tackled in a number of ways, including auctions, negotiations, and argumentation-based approaches. In this paper we show how this problem can be cast as an optimization of a pairwise cost function. Optimizing this class of energy functions is NP-hard but efficient approximations to the global minimum can be obtained using loopy belief propagation (LBP). Here we detail a max-sum LBP-based approach to the supply chain formation problem, involving decentralized message-passing between supply chain participants. Our approach is evaluated against a well-known decentralized double-auction method and an optimal centralized technique, showing several improvements on the auction method: it obtains better solutions for most network instances which allow for competitive equilibrium (Competitive equilibrium in Walsh and Wellman is a set of producer costs which permits a Pareto optimal state in which agents in the allocation receive non-negative surplus and agents not in the allocation would acquire non-positive surplus by participating in the supply chain) while also optimally solving problems where no competitive equilibrium exists, for which the double-auction method frequently produces inefficient solutions. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MOTIVATION: There is much interest in reducing the complexity inherent in the representation of the 20 standard amino acids within bioinformatics algorithms by developing a so-called reduced alphabet. Although there is no universally applicable residue grouping, there are numerous physiochemical criteria upon which one can base groupings. Local descriptors are a form of alignment-free analysis, the efficiency of which is dependent upon the correct selection of amino acid groupings. RESULTS: Within the context of G-protein coupled receptor (GPCR) classification, an optimization algorithm was developed, which was able to identify the most efficient grouping when used to generate local descriptors. The algorithm was inspired by the relatively new computational intelligence paradigm of artificial immune systems. A number of amino acid groupings produced by this algorithm were evaluated with respect to their ability to generate local descriptors capable of providing an accurate classification algorithm for GPCRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper an outliers resistant learning algorithm for the radial-basis-fuzzy-wavelet-neural network based on R. Welsh criterion is proposed. Suggested learning algorithm under consideration allows the signals processing in presence of significant noise level and outliers. The robust learning algorithm efficiency is investigated and confirmed by the number of experiments including medical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this chapter we provide a comprehensive overview of the emerging field of visualising and browsing image databases. We start with a brief introduction to content-based image retrieval and the traditional query-by-example search paradigm that many retrieval systems employ. We specify the problems associated with this type of interface, such as users not being able to formulate a query due to not having a target image or concept in mind. The idea of browsing systems is then introduced as a means to combat these issues, harnessing the cognitive power of the human mind in order to speed up image retrieval.We detail common methods in which the often high-dimensional feature data extracted from images can be used to visualise image databases in an intuitive way. Systems using dimensionality reduction techniques, such as multi-dimensional scaling, are reviewed along with those that cluster images using either divisive or agglomerative techniques as well as graph-based visualisations. While visualisation of an image collection is useful for providing an overview of the contained images, it forms only part of an image database navigation system. We therefore also present various methods provided by these systems to allow for interactive browsing of these datasets. A further area we explore are user studies of systems and visualisations where we look at the different evaluations undertaken in order to test usability and compare systems, and highlight the key findings from these studies. We conclude the chapter with several recommendations for future work in this area. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cerebral palsy is a severe condition usually caused by decreased brain oxygenation during pregnancy, at birth or soon after birth. Conventional treatments for cerebral palsy are often tiresome and expensive, leading patients to quit treatment. In this paper, we describe a virtual environment for patients to engage in a playful therapeutic game for neuropsychomotor rehabilitation, based on the experience of the occupational therapy program of the Nucleus for Integrated Medical Assistance (NAMI) at the University of Fortaleza, Brazil. Integration between patient and virtual environment occurs through the hand motion sensor “Leap Motion,” plus the electroencephalographic sensor “MindWave,” responsible for measuring attention levels during task execution. To evaluate the virtual environment, eight clinical experts on cerebral palsy were subjected to a questionnaire regarding the potential of the experimental virtual environment to promote cognitive and motor rehabilitation, as well as the potential of the treatment to enhance risks and/or negatively influence the patient’s development. Based on the very positive appraisal of the experts, we propose that the experimental virtual environment is a promising alternative tool for the rehabilitation of children with cerebral palsy.