155 resultados para Compravenda de béns immobles
Resumo:
This dissertation investigates high performance cooperative localization in wireless environments based on multi-node time-of-arrival (TOA) and direction-of-arrival (DOA) estimations in line-of-sight (LOS) and non-LOS (NLOS) scenarios. Here, two categories of nodes are assumed: base nodes (BNs) and target nodes (TNs). BNs are equipped with antenna arrays and capable of estimating TOA (range) and DOA (angle). TNs are equipped with Omni-directional antennas and communicate with BNs to allow BNs to localize TNs; thus, the proposed localization is maintained by BNs and TNs cooperation. First, a LOS localization method is proposed, which is based on semi-distributed multi-node TOA-DOA fusion. The proposed technique is applicable to mobile ad-hoc networks (MANETs). We assume LOS is available between BNs and TNs. One BN is selected as the reference BN, and other nodes are localized in the coordinates of the reference BN. Each BN can localize TNs located in its coverage area independently. In addition, a TN might be localized by multiple BNs. High performance localization is attainable via multi-node TOA-DOA fusion. The complexity of the semi-distributed multi-node TOA-DOA fusion is low because the total computational load is distributed across all BNs. To evaluate the localization accuracy of the proposed method, we compare the proposed method with global positioning system (GPS) aided TOA (DOA) fusion, which are applicable to MANETs. The comparison criterion is the localization circular error probability (CEP). The results confirm that the proposed method is suitable for moderate scale MANETs, while GPS-aided TOA fusion is suitable for large scale MANETs. Usually, TOA and DOA of TNs are periodically estimated by BNs. Thus, Kalman filter (KF) is integrated with multi-node TOA-DOA fusion to further improve its performance. The integration of KF and multi-node TOA-DOA fusion is compared with extended-KF (EKF) when it is applied to multiple TOA-DOA estimations made by multiple BNs. The comparison depicts that it is stable (no divergence takes place) and its accuracy is slightly lower than that of the EKF, if the EKF converges. However, the EKF may diverge while the integration of KF and multi-node TOA-DOA fusion does not; thus, the reliability of the proposed method is higher. In addition, the computational complexity of the integration of KF and multi-node TOA-DOA fusion is much lower than that of EKF. In wireless environments, LOS might be obstructed. This degrades the localization reliability. Antenna arrays installed at each BN is incorporated to allow each BN to identify NLOS scenarios independently. Here, a single BN measures the phase difference across two antenna elements using a synchronized bi-receiver system, and maps it into wireless channel’s K-factor. The larger K is, the more likely the channel would be a LOS one. Next, the K-factor is incorporated to identify NLOS scenarios. The performance of this system is characterized in terms of probability of LOS and NLOS identification. The latency of the method is small. Finally, a multi-node NLOS identification and localization method is proposed to improve localization reliability. In this case, multiple BNs engage in the process of NLOS identification, shared reflectors determination and localization, and NLOS TN localization. In NLOS scenarios, when there are three or more shared reflectors, those reflectors are localized via DOA fusion, and then a TN is localized via TOA fusion based on the localization of shared reflectors.
Resumo:
The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.
Resumo:
La estructura económica mundial, con centros de producción y consumo descentralizados y el consiguiente aumento en el tráfico de mercancías en todo el mundo, crea considerables problemas y desafíos para el sector del transporte de mercancías. Esta situación ha llevado al transporte marítimo a convertirse en el modo más económico y más adecuado para el transporte de mercancías a nivel global. De este modo, los puertos marítimos se configuran como nodos de importancia capital en la cadena de suministro al servir como enlace entre dos sistemas de transporte, el marítimo y el terrestre. El aumento de la actividad en los puertos marítimos produce tres efectos indeseables: el aumento de la congestión vial, la falta de espacio abierto en las instalaciones portuarias y un impacto ambiental significativo en los puertos marítimos. Los puertos secos nacen para favorecer la utilización de cada modo de transporte en los segmentos en que resultan más competitivos y para mitigar estos problemas moviendo parte de la actividad en el interior. Además, gracias a la implantación de puertos secos es posible discretizar cada uno de los eslabones de la cadena de transporte, permitiendo que los modos más contaminantes y con menor capacidad de transporte tengan itinerarios lo más cortos posible, o bien, sean utilizados únicamente para el transporte de mercancías de alto valor añadido. Así, los puertos secos se presentan como una oportunidad para fortalecer las soluciones intermodales como parte de una cadena integrada de transporte sostenible, potenciando el transporte de mercancías por ferrocarril. Sin embargo, su potencial no es aprovechado al no existir una metodología de planificación de la ubicación de uso sencillo y resultados claros para la toma de decisiones a partir de los criterios ingenieriles definidos por los técnicos. La decisión de dónde ubicar un puerto seco exige un análisis exhaustivo de toda la cadena logística, con el objetivo de transferir el mayor volumen de tráfico posible a los modos más eficientes desde el punto de vista energético, que son menos perjudiciales para el medio ambiente. Sin embargo, esta decisión también debe garantizar la sostenibilidad de la propia localización. Esta Tesis Doctoral, pretende sentar las bases teóricas para el desarrollo de una herramienta de Herramienta de Ayuda a la Toma de Decisiones que permita establecer la localización más adecuada para la construcción de puertos secos. Este primer paso es el desarrollo de una metodología de evaluación de la sostenibilidad y la calidad de las localizaciones de los puertos secos actuales mediante el uso de las siguientes técnicas: Metodología DELPHI, Redes Bayesianas, Análisis Multicriterio y Sistemas de Información Geográfica. Reconociendo que la determinación de la ubicación más adecuada para situar diversos tipos de instalaciones es un importante problema geográfico, con significativas repercusiones medioambientales, sociales, económicos, locacionales y de accesibilidad territorial, se considera un conjunto de 40 variables (agrupadas en 17 factores y estos, a su vez, en 4 criterios) que permiten evaluar la sostenibilidad de las localizaciones. El Análisis Multicriterio se utiliza como forma de establecer una puntuación a través de un algoritmo de scoring. Este algoritmo se alimenta a través de: 1) unas calificaciones para cada variable extraídas de información geográfica analizada con ArcGIS (Criteria Assessment Score); 2) los pesos de los factores obtenidos a través de un cuestionario DELPHI, una técnica caracterizada por su capacidad para alcanzar consensos en un grupo de expertos de muy diferentes especialidades: logística, sostenibilidad, impacto ambiental, planificación de transportes y geografía; y 3) los pesos de las variables, para lo que se emplean las Redes Bayesianas lo que supone una importante aportación metodológica al tratarse de una novedosa aplicación de esta técnica. Los pesos se obtienen aprovechando la capacidad de clasificación de las Redes Bayesianas, en concreto de una red diseñada con un algoritmo de tipo greedy denominado K2 que permite priorizar cada variable en función de las relaciones que se establecen en el conjunto de variables. La principal ventaja del empleo de esta técnica es la reducción de la arbitrariedad en la fijación de los pesos de la cual suelen adolecer las técnicas de Análisis Multicriterio. Como caso de estudio, se evalúa la sostenibilidad de los 10 puertos secos existentes en España. Los resultados del cuestionario DELPHI revelan una mayor importancia a la hora de buscar la localización de un Puerto Seco en los aspectos tenidos en cuenta en las teorías clásicas de localización industrial, principalmente económicos y de accesibilidad. Sin embargo, no deben perderse de vista el resto de factores, cuestión que se pone de manifiesto a través del cuestionario, dado que ninguno de los factores tiene un peso tan pequeño como para ser despreciado. Por el contrario, los resultados de la aplicación de Redes Bayesianas, muestran una mayor importancia de las variables medioambientales, por lo que la sostenibilidad de las localizaciones exige un gran respeto por el medio natural y el medio urbano en que se encuadra. Por último, la aplicación práctica refleja que la localización de los puertos secos existentes en España en la actualidad presenta una calidad modesta, que parece responder más a decisiones políticas que a criterios técnicos. Por ello, deben emprenderse políticas encaminadas a generar un modelo logístico colaborativo-competitivo en el que se evalúen los diferentes factores tenidos en cuenta en esta investigación. The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this dissertation is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this research we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.
Resumo:
Bayesian decision theory is increasingly applied to support decision-making processes under environmental variability and uncertainty. Researchers from application areas like psychology and biomedicine have applied these techniques successfully. However, in the area of software engineering and speci?cally in the area of self-adaptive systems (SASs), little progress has been made in the application of Bayesian decision theory. We believe that techniques based on Bayesian Networks (BNs) are useful for systems that dynamically adapt themselves at runtime to a changing environment, which is usually uncertain. In this paper, we discuss the case for the use of BNs, speci?cally Dynamic Decision Networks (DDNs), to support the decision-making of self-adaptive systems. We present how such a probabilistic model can be used to support the decision making in SASs and justify its applicability. We have applied our DDN-based approach to the case of an adaptive remote data mirroring system. We discuss results, implications and potential bene?ts of the DDN to enhance the development and operation of self-adaptive systems, by providing mechanisms to cope with uncertainty and automatically make the best decision.
Resumo:
Two algorithms, based onBayesian Networks (BNs), for bacterial subcellular location prediction, are explored in this paper: one predicts all locations for Gram+ bacteria and the other all locations for Gram- bacteria. Methods were evaluated using different numbers of residues (from the N-terminal 10 residues to the whole sequence) and residue representation (amino acid-composition, percentage amino acid-composition or normalised amino acid-composition). The accuracy of the best resulting BN was compared to PSORTB. The accuracy of this multi-location BN was roughly comparable to PSORTB; the difference in predictions is low, often less than 2%. The BN method thus represents both an important new avenue of methodological development for subcellular location prediction and a potentially value new tool of true utilitarian value for candidate subunit vaccine selection.