842 resultados para Complex Adaptive Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary software systems are becoming increasingly large, heterogeneous, and decentralised. They operate in dynamic environments and their architectures exhibit complex trade-offs across dimensions of goals, time, and interaction, which emerges internally from the systems and externally from their environment. This gives rise to the vision of self-aware architecture, where design decisions and execution strategies for these concerns are dynamically analysed and seamlessly managed at run-time. Drawing on the concept of self-awareness from psychology, this paper extends the foundation of software architecture styles for self-adaptive systems to arrive at a new principled approach for architecting self-aware systems. We demonstrate the added value and applicability of the approach in the context of service provisioning to cloud-reliant service-based applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objects of a large-scale gas-transport company (GTC) suggest a complex unified evolutionary approach, which covers basic building concepts, up-to-date technologies, models, methods and means that are used in the phases of design, adoption, maintenance and development of the multilevel automated distributed control systems (ADCS).. As a single methodological basis of the suggested approach three basic Concepts, which contain the basic methodological principles and conceptual provisions on the creation of distributed control systems, were worked out: systems of the lower level (ACS of the technological processes based on up-to-date SCADA), of the middle level (ACS of the operative-dispatch production control based on MES-systems) and of the high level (business process control on the basis of complex automated systems ERP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Dynamic Data eXchange (DDX) is our third generation platform for building distributed robot controllers. DDX allows a coalition of programs to share data at run-time through an efficient shared memory mechanism managed by a store. Further, stores on multiple machines can be linked by means of a global catalog and data is moved between the stores on an as needed basis by multi-casting. Heterogeneous computer systems are handled. We describe the architecture of DDX and the standard clients we have developed that let us rapidly build complex control systems with minimal coding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper seeks to link anthropological and economic treatments of the process of innovation and change, not only within a given ‘complex system’ (e.g. a cosmology; an industry) but also between systems (e.g. cultural and economic systems; but also divine and human systems). The role of the ‘Go-Between’ is considered, both in the anthropological figure of the Trickster (Hyde 1998) and in the Schumpeterian entrepreneur. Both figures parlay appetite (economic wants) into meaning (cultural signs). Both practice a form of creativity based on deception, ‘creative destruction’; renewal by disruption and needs-must adaptation. The disciplinary purpose of the paper is to try to bridge two otherwise disconnected domains – cultural studies and evolutionary economics – by showing that the traditional methods of the humanities (e.g. anthropological, textual and historical analysis) have explanatory force in the context of economic actions and complex-system evolutionary dynamics. The objective is to understand creative innovation as a general cultural attribute rather than one restricted only to accredited experts such as artists; thus to theorise creativity as a form of emergence for dynamic adaptive systems. In this context, change is led by ‘paradigm shifters’ – tricksters and entrepreneurs who create new meanings out of the clash of difference, including the clash of mutually untranslatable communication systems (language, media, culture).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates the use of visual artifacts to represent a complex adaptive system (CAS). The integrated master schedule (IMS) is one of those visuals widely used in complex projects for scheduling, budgeting, and project management. In this paper, we discuss how the IMS outperforms the traditional timelines and acts as a ‘multi-level and poly-temporal boundary object’ that visually represents the CAS. We report the findings of a case study project on the way the IMS mapped interactions, interdependencies, constraints and fractal patterns in a complex project. Finally, we discuss how the IMS was utilised as a complex boundary object by eliciting commitment and development of shared mental models, and facilitating negotiation through the layers of multiple interpretations from stakeholders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes how ecological dynamics, a theory focusing on the performer-environment relationship, provides a basis for understanding skill acquisition in sport. From this perspective, learners are conceptualized as complex, neurobiological systems in which inherent self-organisation tendencies support the emergence of adaptive behaviours under a range of interacting task and environmental constraints. Intentions, perceptions and actions are viewed as intertwined processes which underpin functional movement solutions assembled by each learner during skill acquisition. These ideas suggest that skill acquisition programmes need to sample information from the performance environment to guide behaviour in practice tasks. Skill acquisition task protocols should allow performers to use movement variability to explore and create opportunities for action, rather than constraining them to passively receiving information. This conceptualisation also needs to characterize the design of talent evaluation tests, which need to faithfully represent the perception-action relationships in the performance environment. Since the dynamic nature of changing task constraints in sports cannot be predicted over longer timescales, an implication is that talent programmes should focus on developing performance expertise in each individual, rather than over-relying on identification of expert performers at specific points in time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most commentators understand that contemporary social, economic and environmental challenges require quality governance from global to local scales. While public scrutiny of governance has increased in recent years, the literature on frameworks and methods for analysis in complex, poly-centric and multi-thematic governance systems remains fragmented; displaying many disciplinary or sectoral biases. This paper establishes a stronger theory-based foundation for the analysis of complex governance systems. It also develops a clear analytical framework applicable across a vast array of differing governance themes, domains and scales (GSA). The key methodological steps and evaluative criteria for the GSA framework are determined and practical guidance for its application in reform is provided.